A complex suite of granitoids comprises the geologic setting of the Wagner Wash Well 7.5' quadrangle. The volcaniclastic rocks, dacite porphyry, and monzonite porphyry are believed to represent the mafic end members of the complex. The monzonite porphyry is the most voluminous rock type and is the dominant rock type in the study area. The dacite porphyry is less common and is found in the western part of the study area. The volcaniclastic rocks are found in the eastern part of the study area.

The volcaniclastic rocks are characterized by their matrix of dark gray to purple sandstone, which is typically aphanitic to porphyritic. The matrix is composed of subangular to subrounded quartz, feldspar, and mica, with minor amounts of clay minerals and iron oxides. The matrix is typically aphanitic to porphyritic, with phenocrysts of plagioclase and hornblende.

The dacite porphyry is characterized by its matrix of dark gray to purple sandstone, which is typically aphanitic to porphyritic. The matrix is composed of subangular to subrounded quartz, feldspar, and mica, with minor amounts of clay minerals and iron oxides. The matrix is typically aphanitic to porphyritic, with phenocrysts of plagioclase and hornblende.

The monzonite porphyry is characterized by its matrix of dark gray to purple sandstone, which is typically aphanitic to porphyritic. The matrix is composed of subangular to subrounded quartz, feldspar, and mica, with minor amounts of clay minerals and iron oxides. The matrix is typically aphanitic to porphyritic, with phenocrysts of plagioclase and hornblende.

The volcaniclastic rocks, dacite porphyry, and monzonite porphyry are believed to represent the mafic end members of the complex. The monzonite porphyry is the most voluminous rock type and is the dominant rock type in the study area. The dacite porphyry is less common and is found in the western part of the study area. The volcaniclastic rocks are found in the eastern part of the study area.