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ABSTRACT

A mathematical model can minimize the total cost of rock mass excavation. The
total excavation cost model consists of functions defining the owning and operating costs
for a drill, explosive and auxiliary explosive loading equipment, and an excavating
machine. These functions contain variables that describe certain remotely sensed physical
features of both the pre-blasted rock mass volume and the fragments that result from
blasting. Remote sensing was performed within operating open pit Gold and Copper mines
located within the Western United States. For a remotely sensed rock mass, the model
automatically determines the rock mass volume and the explosive mass that result in
minimum total excavation cost. The model estimated minimum total excavation cost for
different loading machines over a range of rock mass conditions that are characteristic of
those observed within the mines. The results suggest that a model including the cost of a

comminutive process for minimizing the cost of reducing the size of rock mass is feasible.
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1. INTRODUCTION

“ The gold which the Griffins dig up consists of rock encrusted with
golden drops like fiery sparks; they quarry the gold with the power of
their hard beaks. These creatures are found in India and are sacred to
the sun, having the size and strength of lions whom they excel by reason
of their wings; and they can vanquish elephants and great serpents. The
tiger, however, they cannot vanquish, for he excels them by his
fleetness...”

Philostratus ( 2n4/ 3 Century ) ~-~ Life of Appolonius of Tyana

Minimizing the cost of reducing the size of rock mass is a basic function of the
mining process. Three principal modes of rock mass size reduction are drilling, blasting,
and comminution ( crushing and grinding ). Each of these modes utilizes a distinctly
different process to fracture rock and thereby reduce it’s size. The fracture processes of
these different modes are all related to the fact that rock is “weak” when subjected to
tensile stresses. Currently there is no unified theory relating the principal modes of rock
mass size reduction, merely much empirical evidence that a “weak” mass of rock will drill,
blast, crush, and grind easier than a “strong” mass of rock. A considerable amount of such
evidence exits ( in the form of capital costs and energy consumptions for the various
modes of size reduction ) throughout the mining literature, but it is difficult to utilize this
data to form any sort of conclusion relating to what may be the most cost effective
arrangement of the different modes of size reduction.

The mass specific energy ( MJ/ton ) consumed by a size reducing process can be

stated as:
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E,. = kyf(R) (1.1)
where ky, is a physical constant relating the per unit mass resistance of the material to the
reductive mode, and f is a function acting on some definition of mass size reduction R.

As an example, the energy consumption of a comminutive process appears to be well

characterized by Bond’s formula [ Wills, 1992 ]:

\'Y = 10W; (%—%) (1.2)
where W is the energy consumption ( kW-hr/ton ) of the comminutive machine, W; is the
rock’s work index ( kW-hr/ton ) , and P and F are the screen size values ( microns ) for
which 80% of the product and feed particles pass.

There currently exists no relationship of a form similar to formula 1.1 above for
the explosive mode of size reduction. However, before a rock mass volume can be blasted

into fragments:

1. Atleast some portion of its volume must be reduced by drilling;

2. atleast some portion of the rock mass surface area is exposed enabling the
observation of pre-existing cracks and fracture boundaries that decompose the
volume into discrete “chunks” of rock mass.

If the drill penetration rate can be related to the resistance of the rock mass to the
explosive mode of size reduction, and if image analysis can be utilized to obtain both the
pre and post blast mass size distributions, then it will be possible to formulate an
expression of form analogous to Equation 1.1 above for the explosive mode of size
reduction. Then for example the cost of blasting a rock mass composed of chunks of

different sizes into a fragment size distribution could be precisely determined. If
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properties of these fragments could then be related to the costs of subsequent loading,
crushing, and grinding operations, then a formulation for the total cost of size reduction
can be attained. The challenging aspect of such a formulation is that both the strength and
structural features of the rock mass can change rapidly on the spatial scale, similar to the
grade of the commodity contained within the rock. So a total cost formulation that
accounts for such variation in rock mass conditions will be of considerable value towards

achieving the lowest total cost of size reduction.

1.1  The Stages of Rock Mass Size Reduction

Mining operations generally utilize three distinct stages of rock mass size
reduction. The first stage consists of size reduction via the mode of explosive blasting,
which is almost always performed for the purpose of practical material handling. The
reduction ratio ( here defined as [ mean mass start size/mean mass finish size ] ) of this
primary stage appears to be about 1 order of magnitude ( 10' ). Sometimes the
fragments produced by blasting are transported directly to waste dumps, or as in the case
of leaching operations, blasted ore fragments are leached in-situ or else moved onto
horizontal pads for subsequent solution recovery of the ore commodity; in either event
blasting is the only mode of size reduction procedure utilized. The second stage of size
reduction is a comminutive mode characterized by mechanical crushing. Crushing is
performed for a variety of reasons, including: 1) attaining a specific fragment size range
for subsequent leaching operations; 2) reducing the size of blasted fragments for efficient

conveyor belt handling operations; 3) pre-sizing material for subsequent grinding
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operations. The reduction ratio observed in typical crushing operations also appears to be
about one order of magnitude. The third stage, grinding (or milling) is also a comminutive
reductive mode. Grinding is performed to produce particles finer than those attainable by
crushing, usually to physically separate waste rock ( called “tailings”) from elements or
compounds of valuable commodity to permit their subsequent concentration. The
reduction ratios observed in grinding can vary from one to four orders of magnitude. Then
for a mass of rock undergoing all three stages of size reduction, the overall reduction ratio
can range from about 3 to 6 orders of magnitude, and the total energy expenditure per unit
mass can be considerable. So long as the cost of this expenditure is somewhat less than the

value of contained commodity, the rock mass may be profitably reduced in size.

1.2  The Objectives of Rock Mass Size Reduction

The objective of rock mass size reduction is commodity production. Figure 1
presents, in symbolic schematic form, the major descriptor sets thought to influence the
production of commodity from a massive deposit being mined by the open pit method.
Descriptor sets representing the equipment and processes of other mining methods and
mass stream layouts could be defined in similar fashion. On Figure 1 the grinding mode of
size reduction is represented by processes that occur within a “plant”, where the plant
represents any overall process ( i.e. flotation, gravity concentration, leaching, etc.) used
for concentrating the commodity. Beginning with the left hand side of Figure 1:

m A crustal descriptor provides generalized geological and hydrological information as
provided principally by geophysical reconnaissance and exploration;
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exploratory and production drilling information is provided by the drilling descriptor;

the blast descriptor describes the explosive mode of size reduction acting on the rock
mass;

information concerning the fragmented rock mass is provided by the fragment
descriptor;

loading machine and primary conveyance descriptors describe the transport of the
mass stream into either a crusher or the plant feed stockpile;

a secondary conveyance (belt or truck) descriptor gives data on an alternate form of
mass stream transport when the crushing mode of size reduction is utilized;

the plant descriptor supplies information relating to the subdivision of the principal
mass stream into its commodity and waste constituents;

environmental (climatic), sociological, Capital, and regulatory and remediative
descriptors are included as they all influence the rate and cost of processing rock mass.

>
#

Recconaissance and Exploration -3 Sociological

Crustal 'P\é Primary Conveyance

Drilling XR  Crushing

Blasting P Plant Feed

Capital ’S\é Secondary Conveyance
Environmental Pr Plant

Fragment CM Commodity

Rock Mass W Waste

Loading Machine Rﬁ Regulatory and Remediative

Figure 1.1 - Symbolic Representation of the Descriptor Sets Defining the Extraction

and Concentration of a Mineral or Metallic Crustal Commodity



19

There are different objective functions for a system producing commodity from

rock mass. The typical objective function appears to be one of cost minimization:

d dc
Mem  Minimize ——tot

Gi y
el — M

(1.3)

where M., is commodity mass, t is time, and C,, is the total cost incurred by the
procurement, size reduction, handling, concentrating, and remediative processes
performed upon the rock mass. Another important objective function appears to be totally

unrelated to cost minimization:

d Mcm
dt

Given CPto , Maximize (1.4)

Where CP;_represents a capital quantity that is suddenly available at time t,.

1.3  The Scope of the Research

The overall scope of the current research is perhaps best explained with the
following lists of hypothetical observations and constraints, and the single hypothetical
concluding argument:

Given hypothetical observations:

1. A mass of rock exists which exhibits spatial variance with respect to commodity
grade, strength, density, and structural features;

2. therock mass is to be successively reduced in size by blasting, crushing, and grinding;

3. before the rock mass can be blasted, at least some portion of it’s volume must be
reduced by drilling;

4. drilling and grinding are inferred to be the most expensive modes of reducing the size
of the rock mass;
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blasting is inferred to be the least expensive mode of size reduction;

the expense of the crushing mode of size reduction is inferred to be somewhere
between the expense incurred by the processes of 4) and 5) above;

after the rock is blasted, it must be loaded and transported to some location distal to
the drilling and blasting site for subsequent crushing;

after the material is crushed, it must be transported to some location distal to the
crushing site for subsequent grinding; the mode of transport may be different than that
used in 7) above.

Given hypothetical constraints:

X

Because of practical operational constraints pertaining to fly-rock, slope stability,
and/or seismic considerations, there exists an upper limitation on the explosive mass
that may be introduced into the rock mass to permit size reduction by blasting;

because of practical considerations pertaining to material handling ( loading and
conveyance ) there exists a lower limitation on the explosive mass that may be
introduced into the rock mass.

Concluding hypothetical argument:

1

1.4

There exists some allocation of the different modes of size reduction by drilling,
blasting, crushing, and grinding, such that while subject to the explosive mass
constraints, the total cost incurred by the overall size reduction and handling
processes performed upon the mass of rock will be minimized.

The Direction of the Current Research

The observational data set utilized for this thesis is described within Chapter 3. The

data was originally gathered for the purpose of attempting to characterize the relationship

between rock fragmentation and the production performance of large loading machines.

The data was obtained from a wide variety of different mining sites and includes a large

assortment of different machines. The data is composed of information concerning: 1) The

uniaxial compressive strength of rock mass; 2) the structural features ( video imagery and
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hand drawn maps ) of the exposed faces of rock mass; 3) the energy content and spatial
distribution of the explosives used to blast the rock mass; 4) video imagery of the
fragments produced by the blasts; and 5) video images of the machines loading fragments
into off-road haul trucks.

The data contains no information concerning the comminutive modes of size
reduction, and only limited information concerning the primary mode of conveyance
( trucks ) occurring subsequent to fragment loading. Of most importance is the fact that
the data set does not include any machine cost data ( owning nor operating ) nor
commodity grade information. Thus the scope of the research, as outlined in Section 1.3
above, is forced to shrink considerably. The research will now concentrate on the cost
relationships between: 1) Drilling; 2) the explosive mode of size reduction, and 3) the
performance of loading machines. Then the lists of hypothetical observations, constraints,
and arguments previously presented can be altered to the following:
Given hypothetical observations:
1. A mass of rock exists which is to be reduced in size by blasting;
2. the dimensions of the rock mass are known;
3. the density of the rock mass can be approximated;

4. before the rock mass can be blasted, at least some portion of it’s volume must be
reduced by drilling, and at least some portion of its outer surface area can be
monitored and analyzed to provide data concerning pre-existing flaws, fractures, and
joints; and the mass, energy content, and location of the explosive introduced into the
drill hole is known;

5. therate (ft/hr) at which the drill of known diameter penetrates the rock mass can be
monitored;
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the owning and operating costs ( $/hr ) of the drill can be approximated;

the explosive cost ( $ /Ib. ) and the owning and operating cost ( $/hr ) of the explosive
loading equipment can be approximated;

after the rock mass is blasted, the fragment muckpile can be monitored to provide a
fragment descriptor set;

the rock mass fragments must be subsequently machine excavated;
the rate of machine excavation can be monitored;
the machine owning and operating costs ( $/hr ) can be approximated,

the drilling cost ( $/ton ) is inferred to be a function of the information within 2), 3),
5) and 6) above;

the cost ( $/ton ) incurred in fragmenting the rock mass volume are inferred to be
some function of the data within 2), 3), 5), 6), 7), and 8)above;

the cost incurred by the subsequent loading of the fragmented rock mass volume are
some function of the data within 8), 10), and 11) above.

Given hypothetical constraints:

5

Because of practical considerations pertaining to either to ground control or
stemming ejection, there exists an upper limitation on the explosive mass that may be
introduced into the rock mass volume via the drill hole to permit size reduction by
blasting;

because of practical considerations pertaining to fragment loading, there exists a
upper limitation on the volume of rock mass affected by the explosive mass.

Concluding hypothetical argument:

L.

There exists some discrete value(s) for some variable(s) within the fragment

descriptor set, such that while subject to the explosive mass and material handling

constraints, and while subject to the physical nature of the rock mass, the total cost

per ton incurred by drilling, blasting, and loading the rock mass volume will be
nimized.
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1.5  The Fragmentation and Rock Mass Descriptors - In Brief

The concluding argument above implies that a formulation for total excavation
cost will involve sets of variables ( descriptor sets ) that describe the drill, the rock mass,
the fragments, and the loading machine. The complete fragmentation descriptor set is
described in Chapter 3 ( Section 3.4.4 ) and consists of 20 discrete descriptors. A single
descriptor from this set was selected to test the concluding argument; the screen size of
the rock mass fragments. Undoubtedly total cost formulations will eventually be derived as
multivariate functions that will include other additional fragment descriptors, such as
fragment shape or fragment “ key factor ” (i.e. how the fragments are keyed or locked
together ). But as the developments presented within the subsequent Chapters show, the
formulation of total cost per ton as a function of a single screen size descriptor is
mathematically complex. But the same approaches and techniques can be used as
guidelines for other researchers attempting to formulate rock mass size reduction cost as a
multivariate function of fragmentation descriptors.

Information composing the rock mass descriptor set will consist of it’s dimensions,
strength, and structural features, as provided by the drill pattern, the drill penetration rate,

and digital image analysis, respectively.

1.6  Analytical Tools Utilized in the Research
Two important tools were used to process the experimental excavation data:
Digital image analysis ( DIA ) and regression analysis ( RA ). DIA was used to provide

descriptors for: 1) The pre-blasted rock mass, and 2) the rock mass fragments that
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resulted from the blast. RA was then used to determine functional relationships between
these descriptors and productivity models for drilling, blasting, and loading. More
complete explanations of the roles played by DIA and RA within the research are given

below.

1.6.1 Digital Image Analysis

Digital image analysis was a fundamental tool for the research. The formulation of
total excavation cost required determination of both the pre and post blast size
distributions of the rock mass. This was accomplished with a sophisticated package of
digital image analysis software.

The phrase “fragment size” used throughout this work is synonymous with the
term “fragment screen size”; and fragment size distributions produced by a digital
fragment delineation system are representative of the results produced by physically
screening the rock fragments through a system of sieves, or filters, each having
proportionately smaller aperture size, compared to the preceding filter.

Still images of fragment muckpiles were processed with the “ SPLIT ” image
processing program developed at the University of Arizona Department of Mining and
Geological Engineering [ Kemeny, 1993 ]. SPLIT is composed of many specialized
subroutines written for an digital image processing package originally developed by the
National Institute of Health for medical research. Still images of exposed rock mass faces
were processed with a special “ scan line ” subroutine developed by Kemeny to estimate

the size distribution of the material within the rock mass bounded by faults and fractures.
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1.6.2 Regression Analysis
Regression analysis of the site data was utilized to determine relationships
between:

1. drill penetration rate and the strength of the rock mass;
2. rock mass and fragment size ( as determined by DIA ) and blasting;

3. loading machine production and fragment size.

1.7  The Research Objectives

In any mine, the physical nature of the rock mass volume ( i.e. the “ground
conditions” ) are not constant. The ground conditions can change rapidly on the spatial
scale. Typically a mine’s operating plan will account for changing ground conditions by
assigning different categories to the ground, such as “weak” or “strong”. The true
meanings of these terms can differ from mine to mine. For this work, the physical nature
of the ground is described by its strength ( as provided by the drill ) and by its structural
features ( as provided by DIA ). The size of the fragments produced by blasting the rock
mass volume is a function of the ground conditions. In open pit mines, blasting engineers
compensate for changing ground conditions by: 1) Changing the volume of rock mass
affected by the blast, by altering the horizontal pattern between holes; and 2) changing the
quantity of explosive loaded into the drill holes, either by altering the subdrill ( below
grade hole length ) and/or by altering the stemming ( length of inert material in the drill
hole above the explosive ). If the performance of loading machines is an explicit function

of fragment size, then it follows that machine performance is also an implicit function of
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blasting and ground condition variables.

The objectives of the research are to investigate how total excavation cost
(drilling, blasting, and loading ) changes subject to changing ground conditions. The goal
1s to produce a total excavation cost model that includes both rock mass volume and
explosive mass per drill hole as control variables. Then given the ground conditions and
the types of drilling and loading machines, the model will automatically determine the rock

mass volume and explosive load associated with minimizing total excavation cost.

1.8 A Summary of the Work

The preliminary mathematical formulation for total excavation cost follows the
hypothetical argument presented in Section 1.4 above, and is presented in Chapter 2. The
final form of the total excavation cost formulation required the determination of certain
constants and functions. The use of DIA and RA on the experimental data set to
determine these constants and functions is described with examples in Chapter 3. The
development of cost and productivity models for blasting, drilling, and loading machines
are then presented in Chapters 4, 5, and 6 respectively. The final form of the total
excavation cost model is then presented in Chapter 7, where the total estimated cost is
minimized with respect to 2 variables: Powder column length and rock mass volume.
Results and conclusions for modeled estimates of total excavation cost for different
loading machines and different ground conditions are shown in Chapter 8. Chapter 9 then

goes on to present recommended future work.
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2. A MATHEMATICAL FORMULATION
FOR TOTAL EXCAVATION COST

“ In the 15th century heavy artillery had reached a high level of
perfection. In the 16th and 17th centuries the war industry made
enormous demands upon the metallurgical industry. In the months of
March and April 1652 alone, Cromwell required 335 cannon, and in
December a further 1,500 guns of an aggregate weight of 2,230 tons,
with 117,000 balls and 5,000 hand bombs in addition. Consequently it
is clear why the problem of the most effective exploitation of mines
became a matter of prime importance. First and foremost arises the
problem set by the depth at which the ores lie. But the deeper the mines,
the more difficult and dangerous work in them becomes. ”

B. Hessen ( 1939 ) -~~~ The Social and Economic Roots of Newton’s Principia

The work presented in this Chapter consists of the mathematical formulations for
the dollar per rock mass ton costs of drilling and blasting ( Section 2.1 ) and loading
machines ( Section 2.2 ). Taken together, these two terms compose the total cost per ton
of excavation ( Section 2.3 ).

The dependent variable selected to assess machine performance is fragment screen
size. Given a rock mass of known strength ( as determined by the penetration rate of a
drill of known diameter ) and structural features ( as determined by image analysis ), then
the ultimate motivation is the development of an excavation cost model that can “ tune ”
control variables such as explosive mass and rock mass volume ( i.e. pattern size ) to
control the fragment screen size and hence loading machine cost per ton. Drilling cost per
ton depends upon the volume of rock mass that is blocked out by the drill and
subsequently affected by the blast. Thus explosive cost per ton will also depend upon rock

mass volume, but the explosive cost must also include variables describing the strength
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and structure of the rock mass. The total excavation cost is then the sum of the drilling,
blasting, and loading cost terms. However, the full derivation of the total excavation cost
model will not be possible until certain terms and constants within the preliminary
mathematical formulation are determined via regression analysis performed upon the
experimental data set. These constants and terms are developed for the fragmentation,
loading machine, and drilling models in Chapters 4, 5, and 6 respectively. All of this
work then converges in Chapter 7, where the total excavation cost model is completely

developed.

2.1  The Dollar Cost per Ton of Blasting
Before a volume of rock mass can be blasted into fragments it must be perforated
with a drill hole. The drilling time ( hr ) required to perforate a volume of rock mass is:

kg

td = V_
m

(2.1)

where kg is a drill machine constant ( yds-hr ) and Vi, is the rock mass volume ( yd* ).
The drill constant is equivalent to:

V.. (H+sd
kg = ——““(f ) 2.2)
d

where 1, is the average drill penetration rate ( ft/hr ), H is the vertical dimension ( bench
height ) of the rock mass volume ( ft ), and sd is the subdrill ( ft ). ( Drilling and blasting
terminology is presented in Chapter 4 within Figure 4.1 ). The production ( ton/hr ) of

the drill is then:
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d kg H+sd '

where py is the bank density ( tons/yd3 ) of the rock mass. The dollar per ton cost of the

drill may now be expressed as:

C _ ag +by _ kg (ad +bd) _ (ad +bd)(H +sd) (2.4)
d e pb (Vem)” Pb Vrm Ta '

where a4 and by represent the total costs ( $/hr ) of owning ( or leasing ) and operating the
drill, respectively. The operating cost term must be defined to include machine utilization
and availability.

To determine the cost associated with the explosive mode of size reduction, it is
necessary to define the following term:

M,
pv - Vi

(2.3)

where F,, is the volumetric “ powder factor ” ( Ibs/yd® ), and M. is the mass of explosive
(1bs ) inserted into the drill hole. The mass specific powder factor is defined as:

E M, _ M,
. Mm PbVim

(2.6)

where Mm, is the rock mass ( tons ) and py, is the rock mass bank density ( tons/yd3 ). A
mass specific energy factor term (MJ/ton) can be defined as:

E E M, Ee emMe
— e = e =
— e o Mm PbVim PbVrm

(2.7)

where e, is the mass specific energy of the explosive ( MJ/lb ), and E, is the total
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explosive energy content (MJ ). Equation 1.1, which related the mass specific energy
consumed by a size reducing process to some constant of material resistance and some
function of reduction ratio is repeated here:

B, = [y fIR) (2.8)
Currently, the form of the reduction ratio function for the explosive mode of size
reduction is unknown, so:

B — ke TIR) (2.9)
where E, denotes the energy expended by the explosive per ton of rock mass ( MJ/ ton ),
and k. relates the specific energy ( MJ/ ton ) actually consumed by the rock undergoing
the form of size reduction represented by the function “ f ”. Presently the functional
variables of the k., term are also unknown. Equating Equations 2.7 and 2.9 and solving
for M. :

Vo b ke £ (R
M, = JmPokme f(R) (2.10)

€m

The cost ( $/ton ) of fragmenting the rock mass may now be defined as:

M
C. = (ae+be)Te (2.11)
Pb Vrm

where a. and b, now represent the total dollar per explosive pound costs of owning ( or
leasing ) and operating the powder loading equipment, respectively. The following
expression results from substituting the right hand side of Equation 2.10 for the M. term in

Equation 2.11:
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Ce = (ae +be)(kL:(—R)j (2.12)
Volumes of rock mass are rarely monolithic; rather they are most often composed of
discrete blocks or chunks of rock separated from each other by fracture surfaces. The
reduction ratio R will be defined as the ratio of rock mass chunk to fragment screen size,
or s/ s¢. Then the total dollar per ton cost of blasting a rock mass volume composed of

characteristic chunk size s, ( in ) into fragments of characteristic size s¢ ( in ) will be:

k f [Sﬂj
H+sd e s
Cp=Cq + Ce=(ag +bd)((—_l] ¢ f{mgeb)|——2L] @i
Pb Vrm Td €m
2.2  The Dollar Cost per Ton of Loading Machines
The average ton per hour production of a loading machine is:
- PnVp F
p. - PhYblh (2.14)
Liot

where V} is the bucket volume ( yd* ), and Py, t, and Fy are the hourly average values
for the heaped muckpile density ( tons/yd’ ), total machine cycle time ( hr ), and bucket fill
factor ( a dimensionless constant ranging from O to over 1 ). The total cycle time can be
defined as a sum of machine “ perfect cycle time ” and “ shear cycle time "

gt = Tp + T (2.15)

where the shear cycle time represents the time expended is shearing or plouging fragments

in the vicinity of the bucket’s surface. t, is a function of some set of descriptors
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describing the muckpile fragments. If one descriptor is fragment screen size ( “s;” ), then

tyot must be defined by some function such that when s; — 0, tio — t p- Then when s¢

approaches some critical value of screen size, ty,— . This critical size value will be

defined as the bucket width ( Wy, ). A function that describes the non-linear relationship

between ty and sy is:

_ -k _
t = = t + t 2.1
tot S¢ _Wb p S (2.16)

where k;, (in - hrs ) is a machine constant. This function is only defined over the size

_ k _ _
interval 0 <sf<W, since when s;=0, tyy= Bt , and when sy > Wy, ty — ®.
W, P

The average cost ( $/ton ) of utilizing the machine to load fragments over the screen size

range 0 < s; < Wj, is then:

& = am *bm _ - (@] _ _“knm (am"'b_m] (2.17)
" P “ PaVb By s¢ =W | PnVh By '

where a,, and b, represent the total costs ( $/hr ) of owning ( or leasing ) and operating
the excavating machine, respectively. The operating cost term is defined analogous to that
for the drill to include machine utilization and availability.

The denominator of Equation 2.17 above contains terms for the heaped density
and bucket fill factor; clearly when s = 0, pn» — p» (Where py is the material bank density)
and F, — 1. The exact form of these limiting relationships depends upon the shape of the
fragments. This topic is worthy of future research, but for the present development the

heaped density and fill factor terms are assumed to be independent of fragment screen
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size. Then Equation 2.17 can be manipulated into the following form:

)

(@ = = = = = 2.18
v St [PthFb 5t |\ PnVb Fy el
Wy Wy

2.3  The Equation for the Total Cost of Excavation
Summing Equations 2.13 and 2.18 results in a formulation for the total cost per

ton of blasting rock mass volume V., into fragments of screen size s; and subsequently

loading the fragments:
_ _ (H+sd)
Coo = (Ca+Ce)tTm = CptTn = (aa+ba)s 5 —
m
S k
ke f(_g) (_m]
( Sf Wy 8 F B
B tbo J——— | + — (2.22)
€m (-5t | \PuVe Fo
Wh

Tables 2.1 through 2.5 below summarize the variables, constants, and function contained
within Equation 2.22. As depicted in the table columns headed with the term
“Derivation” , many of the terms will have to be developed via image analysis or
regression analysis. These two analytical tools are described within the subsequent
Chapter, which is entirely concerned with the experimental data set. Chapters 4, 5, and 6
are concerned with regression analysis performed upon the blasting, loading, and drilling
subsets of the experimental data, respectively. The completed total excavation cost model
is then developed within Chapter 7. Estimated cost results for different ground conditions

are presented in Chapter 8.
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Table 2.1 - Physical Variables within the Excavation Cost Equation

Symbol| Units Description Derivation of | Derivation Source
Variable
Vi yd’ rock mass volume site data Appendix
(drill data )
H ft rock mass bench height site data Appendix
(drill data )
sd ft sub-drill site data Appendix
(drill data )
S in characteristic screen size
of rock mass “chunks” Image Analysis Chapter 3
composing Vi
St in | characteristic fragment screen | Image Analysis Chapter 3
size
Pb yd*/ton| bank density of the rock mass site data Appendix
volume ( core test )
Pn |yd’/ton| average heaped density of the Regression Chapter 5
shot rock muckpile Analysis
em | MJ/Ib | mass specific energy of the site data Appendix
explosive “ shot ” records

Table 2.2 - Machine Constants within the Excavation Cost Equation

Analysis

Symbol| Units Description Derivation of | Derivation Source
Constant
B none average bucket fill factor Regression Chapter 5
Analysis
kn |in-hr| loading machine constant Regression Chapter 5
Analysis
Vb yd’ struck bucket volume site and Appendix,
handbook data References
W in bucket width site and Appendix,
handbook data References
Ty ft/hr | average drill penetration rate Regression Chapter 6
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Table 2.3 - Cost Constants within the Excavation Cost Equation

Symbol| Units Description Derivation of | Derivation Source
Constant
84+ bg| $/hr |drill owning and operating cost| handbook data, Chapter 7
literature, expert
opinions
am+ bm| $/hr [machine owning and operating « Chapter 7
cost
a.+b.| $/Ib powder rig owning and = Chapter 7

operating cost

Table 2.4 - Physical Constants within the Excavation Cost Equation

Symbol| Units Description Derivation of | Derivation Source
Constant
kme |MJ/ton| explosive specific energy Regression Chapter 4
expended in size reduction Analysis
Table 2.5 - Functions within the Excavation Cost Equation
Symbol| Units Description Derivation of | Derivation Source
Variable or
Constant
f none explosive size reduction Regression Chapter 4

function

Analysis
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3. COLLECTION, PROCESSING, ANALYSIS,
AND MODELING OF THE EXPERIMENTAL DATA

“ The tractors came over the roads and into the fields, great crawlers
moving like insects, having the incredible strength of insects. They
crawled over the ground, laying the track and rolling on it and picking
it up. Diesel tractors, puttering while they stood idle; they thundered
when they moved, and then settled down to a droning roar. Snub-nosed
monsters, raising the dust and sticking their snouts into it, straight down
the country, across the country, through fences, through dooryards, in
and out of gullies in straight lines. They did not run on the ground, but
on their own roadbeds. They ignored hills and gulches, water courses,
fences, houses. ”

Steinbeck ( 1939 ) -~~~ The Grapes of Wrath

3.1 The Scope of the Loading Machine Database

A research project funded by the Caterpillar Corporation was undertaken by the
University of Arizona Department of Mining and Geological Engineering during the
summer of 1995. The original purpose of the work consisted of performing mine site visits
to collect data in an attempt to quantify the parameters that affect the performance of
loading machines. The work resulted in a rich blasting and loading machine database
which contains many different research topics. However, the scope of the original work
contract never included any specific in-depth study of the data. This data was subsequently

utilized for the excavation cost model that is the subject of this thesis.

3.2  Collection of the Experimental Data

The original raw data collected consisted of video imagery on 8 mm tape substrate,
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field notes, and rock samples. The data was obtained at a total of 67 different sites; 62
of these sites were in 13 different open-pit gold and copper mines located in the western
United States. The remaining five sites were in three different industrial rock or mineral
quarries located in California.

The video data consists of machines loading from shot-rock muckpiles, and also
includes images of the vertical faces of the unblasted rock mass in the vicinity of the
muckpiles. The field note data consists of information characterizing the type, make, class,
and dimensions of the mining machines used at the sites, and includes drilling and blasting
data. The field notes also include the results of a visual mapping of rock mass structural
features. The rock samples were gathered in order to perform basic laboratory tests that
would characterize the strength and hardness of the rocks at the sites.

A preliminary investigation of the data showed that both the blasting patterns and
fragment size distributions at the quarry sites differed considerably from the metal mining
sites; this data was parsed from subsequent analysis in order to simplify and “ normalize ”
the research towards “ hard-rock ” metal mining. In addition, hard-rock sites that
consisted of fines ( tailings, alluvial overburdens, sands, etc. ) were excluded, simply
because, due to their high proportion of fine material, they could not be reliably analyzed
with the image processing software. ( The limitations imposed by attempting to process
fine particles with the image software are discussed in detail in Section 3.7.2.1. ) The
exclusion of the sites characterized by fine fragment material resulted in a reduced set of

data.
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3.3  Description of the Experimental Data

The reduced database includes performance data for a total of 52 open pit Gold
and Copper mining sites. The loading machines at 12 of the sites are large ( 12 yd’) front
end loaders. Seven of the sites utilize extra large ( 21.3 yd® ) front end loaders. There are a
total of 16 sites with medium, large and extra large cable shovels; the bucket capacities of
the machines in these three size classes range from 19 to 22 yd’ , 34 to 41 yd’, and 56 yd’
respectively. Muck at the remaining 15 sites was loaded with small, medium and large
hydraulic shovels; the bucket capacities of the machines in these size classes were 13,

18 to 23.5, and 25 to 27 cubic yards, respectively.

Primarily due to the lack of competent test core, strength data exists for only 39 of
these sites. Certain of the sites visited were blasted before shot records were kept, and
therefore blast data ( pattern, powder factor, etc. ) exists for but 36 of these sites. 30 of
the sites have both rock strength data and blast data; and rock mass cell still images exist

for 20 of these 30 sites.

3.4  Experimental Data Processing

The video images of the loading machines were analyzed to obtain machine cycle
time and production information. Video images of the site muckpiles were captured,
scaled, and analyzed with particle delineation software to obtain fragment size distribution
data. Still images of the rock mass cell faces were analyzed with a “ scanline ” subroutine
to obtain pre-blast fracture distribution data. Laboratory strength tests were performed to

obtain the geomechanical properties of the rocks at the different sites.
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3.4.1 Sampling Theory

It is important to emphasize the difference between the terms “ population ” and
“sample ”. The population is the total set of all possible and potential observations. The
sample is the set of discrete observations taken to represent the population. Therefore the
nature of the population is estimated by the sample. For a number of sample observations
of size n on the random variate x; , the sample mean is an approximation of the population

mean |:

x|
Il

11 =
n =]

Where the A symbol denotes “ estimator ”. A measure of the spread of the observations
about the mean is obtained by summing the squared deviations of the sample observations

from the sample mean:

v o= T(q-% (3.2)
i=1
where v is called “ the sum of the squared deviations ” or else simply the “ variation ”.
The “ biased ” population variance is estimated as:
2

(x;i-%x) = s? (33)
1

Q>
o'

1l
™Me

2

nj
The denominator of the above term is called the “ degrees of freedom ” ( DOF ). For
biased sampling the DOF is always equivalent to the total observations. If the mean is

considered as an observation, then the sampling is considered “ unbiased ” and the

estimated variance of the population becomes:
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2
) _ 1 =1 s _ 2
G = o) i)=:1(xl X) = § (3.4)

For this work the unbiased form of sample variance will be used extensively, unless

otherwise noted. The population standard deviation can now be estimated with the sample

standard deviation:

] = 2
& = J( F(x-%x) = s (3.5)

A useful measure of the relative variability of different sample and populations is the

“ coefficient of variation ” ( COV ). The COV for a population and for a sample are

defined respectively as:

(3.6)

=|a

X | @

Until information is obtained concerning how the observations on the population are
distributed, the above terms summarize the practical extent of what may be inferred about

the population from sampling. Distributions are discussed below in Section 3.7.

3.4.2 Cycle Timing Analysis
All of the excavating machines studied for this work were used to load large off
road haul trucks. None of the machines were engaged in “ load and haul ” mode, whereby

the machine would have to load and consequently haul material to a dumping point well
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away from the loading location. Machine production ( ton/hr ) was determined by timing
the number of excavation cycles required to load a truck of known tonnage capacity.

With the aid of a cycle timing program written on a personal computer, loading
machine movement was observed on the video tape and categorized into one of the
following nine cycle categories; load, swing, dump, and return times, truck wait time,
clean-up time, move time, repair time, and unknown time.

One goal of this work is to predict machine production in terms of fragmentation,
therefore only the first four cycle timing categories listed above are used to characterize
machine production. The remaining categories are not related to fragmentation, but rather
provide information concerning the utilization and availability of truck fleets, the rates at
which loading machines move between loading sites, and machine reliability and
maintenance.

The load cycle commenced when the bucket entered the muckpile, and ended
when the bucket exited the muckpile. The swing cycle started at the end of the load cycle
and finished when the bucket had been positioned over the bed of the haul truck to begin
dumping. The dump cycle began at the termination of the swing cycle and was completed
when all of the material within the bucket had been dumped into the bed of the haul truck.
The return cycle is defined between the end of the dump cycle and the start of the load
cycle. The machine cycle time is then defined as the total time required to complete one
excavation cycle:

Lot = tt+ ts+ ta + tr (3.8)
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where t; ,ts , ta and t, are the load, swing, dump, and return times ( seconds ),

respectively.

3.4.3 Machine Production

Machine productivity was defined on a per truck basis:

3600 C
Py, = (———““Ck ] (3.9)
t truck
where:
P = loading machine production ( tons/hr );
Cruck = rated truck capacity ( tons );
truck = truck load time ( sec ), defined over the total number of excavation
cycles “n ” required to serve the truck of rated capacity Ciuck :
n
truck = .El(t tot); (3.10)
1=

where ti is defined according to Equation 3.8 above.
The average total number of trucks filled at the front end loader sites studied was eight;
the cable and hydraulic shovel sites were characterized by an average of 11 filled trucks.
The total number of excavation cycles at the sites varied widely, and depended on such
factors as machine type, bucket size, and truck capacity. The number used to characterize
a machine’s performance at a site was taken as the average site production ( tons/hr ),

defined for the total number of truck cycles “n ”:

}_)m = l E (Pm)

nj_] '

(3.11)
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3.4.3.1 Idealizations Regarding Site Average Machine Production

The site average machine production value, as developed in the preceding section,

does not account for variation in the:

i

bucket fill factor ( thus the quantity of material loaded and carried per excavation cycle
will vary );

truck fill factor ( thus the quantity of material loaded and carried per truck cycle will
vary );

proficiency and morale of the machine operators;

distance between the load and dump locations;

. maneuvering space available for machine operation;

tractive condition of the surfaces upon which the machines operated;
climatic conditions within which the machines operated;

the mechanical condition ( engine hours, tire wear, etc. ) of the loading machines.

3.4.4 Determination of Rock Fragment Size Distribution

Still images of the fragment muckpiles were processed with the SPLIT image

processing program developed at the University of Arizona Department of Mining and

Geological Engineering. SPLIT is composed of many specialized subroutines written for

an image processing package originally developed by the National Institute of Health for

medical research. The methodology used by SPLIT to determine the distribution of

fragment sizes is presented on Figure 3.1, and the following list outlines the procedure:

1

An image of the muckpile containing the rock fragments is captured together with an
object of known dimension to permit determination of image scale ( Plate A );
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2. asubsequent “ zoom ” of the muckpile is captured, and the scale of this captured
image is determined by cross-reference with an object in the image previously captured
( Plate B );

3. the image of Plate B is delineated into discrete fragments and ellipses are fit to each
delineated fragment by the N.I.H. image processing software ( Plate C );

4. the shape data of the fragments is filtered through a statistical filtering function to
determine the physical screen size of the fragments, and a cumulative fragment size
distribution is produced for a user specified screen size (“ bin ) increment ( Plate D ).

(A) Image Captured and Scaled (B) Image of Scaled Fragments
for Processing

*“ Shape ” Output File
for all
Delineated Fragments

L 2
Statistical Filtering Function
Determines Fragment Screen Size

v

Fragment Size Distribution Output

(D) Data Processing Procedures on (C) Binary Image of Delineated
Ellipse Parameters Fragments with a best fitting
Ellipse shown.

Figure 3.1 - Methodology for Determination of Fragment Size Distribution
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3.4.4.1 The Fragment Shape Descriptors

Typically, thousands of fragments are delineated for each muckpile image set used
to characterize a site. If relationships could be discovered between machine production,
blasting, and certain variables defined to characterize the 2 dimensional shape of the
fragments, then the use of time consuming fragment size processing subroutines could be
avoided. A total of 16 descriptors were defined to represent fragment shape. These
descriptors were later used for regression analysis performed to characterize machine
production as a function of fragment descriptor. The fragment “ shape ” output file
produced by the image software includes the following data for each delineated fragment

1

1. The perimeter ( P; ) and surface area ( A; ) of the fragment i ;

2. the lengths of the major axis ( a; ) and minor axis ( b; ) of the best fitting ellipse on the
fragment i;

3. the included angle ( 0; ) between the major axis of the best fitting ellipse and the image
horizontal.

The fragment shape descriptors were defined to consist of the means ( P, A, @, b, and 0

respectively ) and standard deviations of each variable listed above. Two additional
descriptors were defined to characterize the “ elongation ” and “ roughness ” of the

fragments:

1 b,
I, = ;;[1—[;}] (3.12)
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3.13
A; ' (3.13)

Ig = =})id=l=——
(

P; jellipse

.

where Iz and Ir are dimensionless indices of elongation and roughness, respectively.
Finally, two parameter Weibull frequency distributions were fit to the observed
distributions representing the major and minor ellipse axis. ( Weibull frequency
distributions are discussed in detail in Section 3.7.2 ) The scale and shape parameters of

these Weibull distributions were also included in the fragment shape descriptor set.

3.4.4.2 The Expression for Apparent Screen Size

A detailed development of the statistical filter used for the computation of size
distribution is given by Kemeny et al (1993), and will not be repeated here, except for an
important expression used to determine a fragment’s apparent screen size d; ;

d, = 1649 b, + 0.004 a, (3.14)

where b; and a; are the major and minor axis dimensions for the fragment’s best fitting
ellipse ( Section 3.4.4.1 above ). But subsequent to his 1993 work, a more accurate
expression was developed for fragment screen size ( Girdner et al, 1996 ); and this

expression was used to produce the fragment size distributions used in this work:

d; = 116b; b
i

(3.15)
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3.4.4.3 Idealizations Regarding Characterization of the Site Fragment Size
Distribution

The machine loading sites are characterized by their fragmentation descriptor set.
The variables composing this set consist of fragment shape data and the fragment size
distribution derived from the shape data that resulted directly from the image analysis.
After the video imagery for a particular site was reviewed, the tape-time locations of
superior fragment images were noted down; these images were then subsequently
captured, scaled, and processed. Upon the completion of this work, it was discovered that
due to either severe dust conditions or the lack of reliable references with which to scale
the images, a number of sites could be characterized by no more than a total of 3 discrete
muckpile images. Therefore all of the sites were characterized by “ batch ” processing a
total of 3 muckpile images. In such a batch processing mode, the computer analyzes the
images sequentially, and the final shape and size distribution results are presented as
averages, as if one discrete image, totally composed of the fragments contained within the
three separate images, had been submitted. The following list summarizes the pertinent
information that is not contained within the fragment descriptor set:

1. The fragment images were not sampled in random fashion, rather image quality and
the availability of a reliable scale factor was the basis of image selection;

2. for any particular bin size, between-image variations in the fragment sizes observed to
lie within the bin were always observed, and the image software characterized this
variation with a “ bin coefficient of variation ”, equal to the ratio of the fragment size
standard deviation to fragment size mean, for the fragments contained within the bin;

3. the fragment size distributions were derived by utilizing the average bin fragment size
from (2 ) above, because attempting to utilize the bin standard deviation for the
determination of size distribution proved problematic;
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4. the fragments are derived from explosive blasting, and some blast theories ( i.e.
Livingston Crater Theory ) predict a spatial distribution of fragment sizes, where fines
are located close to the charge center and larger fragments are located some
proportional function of distance away from the charge;

5. itis inferred that one predictor of loading machine performance is fragment size;

6. if (4)and (5 ) above are true, then loading machine performance should change
according to some function of distance away from what was the former location of the
charge;

7. the locations of the loading machines with respect to powder columns were never
recorded.

3.4.5 Determination of Rock Mass Size Distribution

The rock mass that was blasted to produce the “ shot-rock ” fragments at the
different sites was never monolithic; always these masses were composed of a network of
smaller blocks or chunks separated from one another by joints and fractures. Still images
of these fracture networks were analyzed with a specialized “ scan-line ” imaging
subroutine running within the SPLIT image processing software to obtain information
concerning the size distribution of the material bounded by the fractures. These size
distributions were subsequently used to help produce an image based blasting model
( Chapter 4 ). The methodology used by SPLIT to determine the distribution of rock mass
size is presented on Figure 3.2, and the following list outlines the procedure:

1. A scaled image of an exposed face of the rock mass is submitted for filtering
(Plate A);

2. the image is processed through specialized filters to remove shadows and accentuate
fractural features ( Plate B );

3. four scan lines are superimposed over the filtered image at principal directions
( Plate C);
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4. the intersections of the scan lines and fractures are measured and subsequently counted
and sorted to produce the rock mass size distribution ( Plate D ).

(A) Scaled Image of (B) Filtered Binary Image
Exposed Rock Mass Showing Rock Fractures

For each scan line, sequential locations of
fracture intersections with scan line
subtracted to obtain distances between
fractures

L 2

Fracture distances for all scan lines lumped
into one population of distances

A 4

Fracture distances observed within each bin
of user defined width counted to produce

fracture distribution
(D) Data Processing Procedures on (C) Binary Fracture Image with
Scan Line Intersections Scan Lines Inserted

Figure 3.2 - Methodology for Determination of Rock Mass Chunk Size Distribution

3.4.51 Idealizations Regarding Characterization of the Site Rock Mass Size
Distribution

1. Because the principal reason of a site visit was to video tape loading machines, the site
rock mass cell still images were never obtained before the rock mass was blasted into
fragments; rather the site images were always obtained at a time scale roughly
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concurrent with loading operations at the nearest conveniently exposed rock mass
face;

2. usually this face was located on the same bench adjacent to the machine loading site,
but occasionally the image was obtained from other bench levels in the vicinity;

3. the purpose for obtaining the rock mass image was to characterize the size distribution
of the rock mass chunks that was blasted to produce the “ shot-rock ” fragments;

4. thus implicitin (1), (2 ), and ( 3 ) above is an assumption that the rock mass chunks
have low spatial variance;

5. also implicit in the general methodology is an assumption that the fracture information
obtained from one exposed face can be extended spatially throughout the entire rock
mass volume which is subsequently blasted;

6. of particular consequence for ( 5 ) above is the fact that the scan line program cannot
determine the dip of the fracture features with respect to the exposed face;

7. another consideration of major importance is the fact that the scan-line technique
cannot distinguish “ natural ” joints and fractures from those imposed by previous
blasts;

8. blast imposed fractures may in fact extend only a short distance into the subject rock
mass;

9. there will exist many fine fractures upon the surface of the rock mass face that the
imaging software cannot resolve.

3.5  Linear Regression Analysis

Linear regression analysis is concerned with establishing whether linear
relationships exist between different sets of variables. The basis of linear regression is the
method of least variation which is presented in the following section. The least variation
method is readily extended towards both linear and non-linear multivariate regression.
This basic tool enabled the development of the production and cost models presented

within the subsequent Chapters.
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3.5.1 The Method of Least Variation

The well known line equation y = a + bx relates two equally numbered sets of x
and y data. Because y = f (x), y is called the dependent variable. It is sometimes
advantageous to obtain an expression of the form:
y = a + bx (3.16)
where y is an estimate of the dependent variable y. If y can be estimated accurately,
then the advantage gained is the fact that y will not always have to be observed. The error
of this approach can be assessed with the method of least variation, which is sometimes
called the method of least squares. The sum of the squared deviations ( i.e. the variation )

for an entire n-sized set of observed and predicted y variables would be:

A = Zl [Yi - 9i]2 = ;[Yi - (a * bxi)]2 (3.17)
If y is to be an accurate estimator of y, a and b must be chosen to minimize the

variation. The partial derivatives of the variation with respect to the constants are equated

to zero to achieve this necessary minimization:

3—: = iyi—na—bixi = 0 (3.18)
= =

. Yy alxobYx = 0 (3.19)
i=1

=1 i=1
If the x values of the sample (xi,y1) ..., (Xa, yn) are not all equal, then there exists a
unique solution for the two simultaneous equations above. The solution can be presented

as [ Kreyszig, 1988 ]



52

a = ¥y - bx (y axis intercept) (3.20)

b = =— (slope) (3.21)

where X and ¥ are the sample means. If the line equation y = a + bx is manipulated into

a =y - bx and equated to Equation 3.20 the geometric definition of slope can be obtained:

(y-3)

b = (x - i) (3.22)

and therefore the regression line y = a + bx always passes through the point defined by

X,y , which is sometimes called the “ data centroid ”.

An example of linear regression can be obtained by applying the method of least
variation to determine the best fitting line relating the SPLIT derived fragment size
distribution scale parameter to the production of large front end loaders. These loaders are
of the same make and type, and they all possess buckets of equivalent width and volume.
Figure 3.3 shows the layout of this trend line for large front end loaders operating at 13

different sites:

®  The trend line passes through the data centroid, at 1819 tons/hr and 6.80 inches;

®m the fragment size distribution scale parameters range from 2 to 22 inches, and the
observed loader productions range from 2300 to 1400 tons/hr, respectively;

m the trend line predicts that large loader production will decrease 37.6 tons/hr per inch
increase in fragment scale size;

m the loader operating at site Au7SG, situated at 22 inches of scale, exhibits about the

same production as the loaders at sites Cu2SG and Au8SC situated at about 5.5 and 7
inches of scale, respectively;
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Figure 3.3 - Best Fitting Large Front End Loaders Production Trend Line for

Fragment Scale Parameter Observations

if the site Au7SG loader was parsed from the data, a much higher slope would result,
i.e. predicted loader production would be much more sensitive to fragment scale size;

if the loaders at sites Cu2SG and Au8SC were parsed, then the predicted production
line would shift upwards for all of the remaining loaders.

In the next section a simple methodology for assessing the quality of the fit is addressed;

then different regressions can be realistically compared.

3.5.2 Assessing the Quality of a Linear Regression

Figure

3.4 shows a hypothetical loader production observation y; conveniently

located near the data centroid:
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Figure 3.4 - Graphical Depiction of Residual, Regression, and Total Deviation
Between an Observed and Predicted Value

The deviation between the observed value y; and the estimated value y; is called the
error. The deviation between the estimated value y. and the mean valuey is called the

regression. The total deviation is the sum of these two terms. Extending these definitions

to include all predicted and estimated observations, the variations can be defined as:

Ve = Z [y, -5.] (3.23)

i=1

v = Yhi-sl (324)

o= s =Y ly-vF =Y b-s T L b-v ] (3:25)

The quality of the fit upon an observations y; could be assessed by forming proportions
one of three ways, relating: 1) Regression deviation to total deviation; 2) error deviation

to total deviation; or 3) regression deviation to error deviation. Extending this line of
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reasoning to include the entire set of observed and predicted observations, the variation
formulas previously presented could be utilized to obtain : 1) Ratio 1 = v /vy ; 2) Ratio 2
= Ve /Vior; and 3) Ratio 3 = v, /v. . The information contained within the three ratios above
is redundant, and so typically only the first ratio is utilized to assess the accuracy of a
regression. This ratio is called the “ squared correlation ” or sometimes simply “ R* . R?
relates the proportion of total variation that can be explained by the linear regression
function. The square root of R” is called the “ correlation coefficient . The correlation
coefficient is the measure of linear correlation between the two variables; R values of 0
and 1 signify no linear correlation and perfect linear correlation, respectively. If an R of
0.50 could be considered as average, then the corresponding R would be 0.707. An R?
value of 0.44 was obtained for the large front end loader production regression,
corresponding to an R of 0.66. Therefore:
®  Only 44% of the total variation in observed total production for the large front end
loaders can be explained by regressing against the scale parameter of the fragment size
distributions;
®m the remaining 56% of the total variation is caused by “ error ”.
Possible causes for the error include, but are not limited to, the items listed in Section
3.4.3.1 and 3.4.4.3 above. One way to increase the accuracy of the regression would be to
parse “ outlier ” observations that contribute significant error. One authority of statistics
states that “ A crude rule might be to consider a residual a possible outlier if is more than

1.5 or 2 standard deviations away from the zero mean. ” [ Morrison, 1983 ]. The standard

deviation of the sampled error can be readily calculated from Equation 3.5 as:
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(3.26)

where two degrees of freedom are subtracted from the denominator because two bits of

information have been consumed determining the regression constants of the y estimator.

Dividing each observed error deviation by s. normalizes the error deviations ( residuals )

into units of s. . The resulting residual scaterplot is shown on Figure 3.5.
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Figure 3.5 - A Residual Scaterplot for the Large Front End Loaders

Figure 3.5 shows that sites Cu2SG and Au8SC are both located between 1.5 and 2
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standard deviations from zero. Thus by parsing these two observations, production would
have a higher linear correlation to fragment scale size. But there exist a total of 19 other
descriptors that characterize the fragments ( Section 3.4.4 ). For example, higher R*
values were obtained simply by utilizing the modal ( most probable ) size of the fragments
(a closed form expression for the modal size is presented as Equation 3.34 ). Also,
multivariate production models exhibiting much higher R* values than the current example
were subsequently developed, but before this work is discussed, the following statements
are necessary:

1. Linear regression is a data analysis technique concerned with composing the most
accurate linear relationship between different sets of sample observations;

2. linear modeling is concerned with the most accurate linear relationship between
different sets of populations;

3. moving from observations to populations requires inference;
4. inference involves error;
5. error is best described with statistics;

6. statistics requires theoretical frequency distributions.

3.6  Statistics and the Linear Model

The linear regression equation y=a + bx presented in the previous section is very
similar to the form of an equation representing a linear model:
Y = a+ BX+E (3.27)
where the model now relates the populations from which a set of observations (x1,y1) ..

., (Xn, yn) are sampled, and E represents the error population. It is advantageous to be
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able to model the dependent Y population as some function Y acting upon the X
population. If the o and B model parameters are conveniently estimated with the
regression parameters obtained from sampled data, then Y becomes equal to a + bX,
and the linear model is approximated as:

€ - Y-Y (3.28)
where € is the sampled estimate of the population error. The estimated standard deviation

of the error population becomes:

(3.29)

The principal aim of an accurate linear population model is the appropriate selection of the
o and 3 model parameters such that 6. will be minimized. But in the material above, the
sample regression parameters a and b have already been utilized to estimate o and [. It is
therefore inferred that o =a * f, (o:), and B =b x f, (o), where f; and f, are some
functions defining the distribution of probability for the error population E. Linear
modeling is vastly simplified if the error population is modeled according to the Normal

frequency distribution.

3.7  Theoretical Frequency Distributions

“There is, in principal, an infinite number of theoretical frequency
distributions, many of which may under some conditions have
frequency curves that look alike... there is no way to find a theoretical
frequency distribution that is a unique representation of a set of actual
observations. ” Koch and Link ( 1971 ) -~~ Statistical Analysis of
Geological Data
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A theoretical frequency distribution is a mathematical representation of an
observed frequency distribution. The following theoretical frequency distributions were
applied to the experimental data:

1. The Normal distribution was used to model sampling error and machine cycle time
distributions;

2. the Weibull distribution was used to model the size distributions of rock mass and the
fragment size distributions that resulted from blasting the rock mass;

3. the F distribution ( Fisher-Snedecor form ) was used to test hypothetical arguments
for regression models, and for deciding whether different sets of sampling observations
are part of the same population;

4. Student’s t distribution was used to establish confidence intervals for population
means and to test arguments for multivariate regression models.

The following sections contain examples of how the distributions were used in the
data analysis. The first three distributions listed above utilize two different parameters to
account for distributive scale/location and shape aspects; Student’s t distribution utilizes
only a single shape parameter. For the sake of brevity, parameter estimation techniques
will not be included herein; except for a graphical technique for obtaining the Weibull
parameters, presented in Section 3.7.2.2.

It is important to define the meaning of the following often misunderstood terms
related to the dispersion of a frequency distribution about certain “central values” of it’s
horizontal x-variate, or range:

a) The “mean ” is the arithmetic average of the observed range values;

b) the “mode ” is the range value at which there exists the most probable observation;

c) the “median ” value of the range has a 0.50 probability of being exceeded by any
observation.
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The mean, mode, and median values of the Normal distribution are equal. By
utilizing the appropriate distribution parameters, all of the other distributions listed above
can be made to approximate the symmetric “ bell ” shaped form of the Normal
distribution. But it is important to stress that the best fitting models to certain observed
frequency distributions set forth in the examples below are not Normal, rather they are

13

unsymmetric, or “ skewed ”. For skewed distributions, the mean, median, and modal

values can differ considerably.

3.7.1 The Normal Distribution

Machine cycle times were studied with different theoretical distributions, including
the Normal, the Weibull, and the Gamma. The quality of the model “ fit ” was ranked by
observing the sum of squared differences between the observed data and the theoretical
model. Modeling observed cycle time data with Normal distributions always resulted in
the lowest sum of squares values.

The frequency distribution ( sometimes called the probability density function ) for

the Normal distribution is defined as [ Shigley, 1977 ]:

2
1 ~(x-n)
f = = N:ij, 3.30
(%) - exp 202 H,o (3.30)
where:
X = the x-variate;
1) = the location parameter ( population mean );

c = the scale parameter ( population standard deviation ).
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An analytic integration of Equation 3.30 is not possible; instead the cumulative
distributions can be obtained by numerically integrating the observed or modeled
frequency data as shown in the following example.

Figure 3.6 shows the forms of the observed and modeled frequency and
cumulative frequency distributions for a population of 21 machine load cycle times for a
large front end loader operating at site Au6SA ( Gold Mine Six, Loading Site A ).
Estimators for the distribution parameters ( [l and o ) were obtained from the proprietary
machine data base. This same data showed that the bucket capacity of this machine was
11.7 yd® ( struck ), and the heaped density of the blasted rock at the site averaged about
1.54 yd’/ton; thus 18 tons of shot rock would be removed from the site by each full bucket
during the machine dig cycle. Referring to Figure 3.6:

B The continuous Normal model of the observed frequency (®) is considerably
smoother than the “ spike-like ” frequency polygon representing the actual observed
data (O);

® the mean, median, and modal values ( read on the cumulative curves at the 50th
percentile value ) for the observed and modeled data are virtually identical and
correspond to a load cycle time of 9.6 seconds;

B between the 50th and 95th percentile values ( right hand scale ) of load cycle time,
there is little difference between the observed &) and modeled (®)cumulative load
cycle times;

m between the 10th and 50th percentile values, the cumulative model (®) predicts lower

load cycle times than those actually observed €), because of four extremely short load
cycle time observations (O) occurring at 2, 3, 4, 5, and 6 seconds, respectively.
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Cumulative Frequency

Figure 3.6 - Observed and Normal Models of Frequency Distributions for the Load
Cycle Time of a Large Front End Loader Operating at Site Au6SA

Although short cycle times are particularly important for maximizing machine production,

the cause of the observed short cycle times cannot be inferred from the frequency plots.

3.7.2 The Weibull Distribution

This distribution was used by the Swedish scientist Waloddi Weibull to model the

strength-volume relationship for rocks [ Weibull, 1939 ]. A cumulative form of the

Weibull distribution was used by American researchers to model the size distributions of

powdered coal [ Rosin and Rammler, 1933 ]; the “ Rosin-Rammler ” distribution has
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subsequently become a popular standard used to characterize particle sizes resulting from
crushing, grinding, and milling processes. The distribution was by the Siberian Scientist V.
Kuznetsov [ Kuznetsov, 1973 ] as a tool in the analytical development of an expression for
determining the mean fragment size that would result from blasting a rock mass. The
distribution was first used to model complete rock fragment size distributions resulting
from blasting by the English Mining Engineer C. Cunningham [ Cunningham, 1983 ], who
expanded upon Kuznetsov’s earlier work. ( The work of Kuznetsov and Cunningham is
covered in more complete detail in Chapter 4. )
The Weibull probability distribution function is [ Evans et al., 1993 ]:
n-1 B

= 3 ) =[]

0 \0 0

where the x -variate can range from 0 to infinity; n = the distribution shape parameter

W:n©6 (3.31)

(n=0); and O = the distribution scale parameter ( 0 > 0 ). Analytic expressions for the

mean, median, and modal values of the Weibull probability distribution are:

1
mean = 0 F(1+;j (3.32)
median = 6 (In2)" (3.33)
1/n
mode = 0 (HTIJ (3.34)

where I is the Gamma function. The cumulative form of the distribution can be obtained

in closed form by integrating Equation 3.31 with respect to x:



64

Fx) = 1 - exp {—(63) } (3.35)

where F(x) is the probability (0< P < 1) that the x variate takes a value less than or

equal to x. The distribution scale parameter O is sometimes called the “ characteristic ”

value [ Evans et al., 1993 ]. If x is equated to 0 in Equation 3.35, then:

F(x) = 1 - exp(-1) = 0.632 (3.36)

for any value of shape parameter ( “n” ) greater than zero. Thus the scale parameter value

of the Weibull probability distribution is always approximately equivalent to the 63"

percentile value of the Weibull cumulative distribution. The scale parameter serves as a

measure of the central tendency of the data, much like the mean value of the Normal

distribution.

Figure 3.7 shows the observed fragment frequency distribution for Site Cu2SD,
together with the form of the best fitting Weibull distribution model. Referring only to the
form of the observed frequency distribution (O) on Figure 3.7:

B The x variate of the distribution represents fragment ( screen ) size ( inches ), and each
curve symbol represents the frequency, or probability of observation, for fragment
size;

®m fragment sizes at this site range from about a half inch to 28 inches;

®m the fragment sizes have been grouped into class widths, or “ bin sizes ” of width 0.50
inch;

m a “step-wise ” shift in the observed fragment frequency occurs between the fragment
class sizes of 7.5 and 8.0 inches.
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Figure 3.7 - Observed and Weibull Model Frequency Distributions for Fragment

Size at Site Cu2SD
3.7.2.1 Step-wise Frequency Shifts in the Observed Frequency Data
Step-wise frequency shifts associated with a particular fragment size that is located

in the lower region of the fragment size range are characteristic of all of the observed
frequency distributions used to help characterize site fragment size for this thesis. These
frequency shifts are a relic of the image processing software, and the reasons they occur
are set forth in the following list. The words in parenthesis denote the specific jargon used

by image processing personnel utilizing the SPLIT fragment delineation system:



10.

66

. The image processing software has a lower bound limit ( called the “ cut-off ” size ) at

which it can resolve a fragment;

the resolution limit of the imagery changes according to the overall scale of the image,
the intensity of the incident light source, and the focus of the image;

thus the cut-off size can vary between different images;

below the cut-off size, the computer does not know the exact nature of the fragment
size distribution;

the invisible fragment material below the cut-off is called the “ fines ”;

a user input to the image processing software is a percent solid composition estimate
(called “ % fines ” ) of the material below the cut-off, i.e. what percent of this
fragment material are fines from which the percent * interstitial void ” can be
determined,;

the software then utilizes an interpolating function to obtain the form of the
distribution below the cut-off fragment size;

the feedback used by the image processor to check the % fines estimate is not the form
of a screen plot of the frequency distribution, but rather the form of a screen plot of
the cumulative fragment size distribution;

a pronounced “ knee ” structure on this cumulative distribution curve indicates a gross
error in the % fines or cut-off ) estimate;

even a small knee on the cumulative distribution will shows up as a pronounced step
on the frequency distribution.

The cumulative form of the fragment size distribution will be discussed subsequently; but

first the Weibull model of the fragment size frequency distribution will again be discussed.

Referring back to Figure 3.7:

The Weibull model of the observed frequency is skewed ( tailed ) towards the right;

and therefore the mean, median, and modal values of this distribution will differ. The

following table presents these values for both the observed and modeled distributions

presented on Figure 3.7, and shows that the largest difference occurs at the mode, where
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the observed fragment size is 2.5 inches larger than the modeled size.

Table 3.1 - Comparison of Results for Observed and Modeled Fragment Size
Frequency Distribution for Site Cu2SD

Fragment Modal Median Mean
Frequency Fragment Fragment Fragment
Distribution Size Size Size
(in) (in) (in)
Observed 7.5 8.5 10.1
Weibull Model 5 9 10.6

Figure 3.8 includes some of the same information as Figure 3.7, but now includes the
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Figure 3.8 - Observed and Modeled Frequency and Cumulative Frequency

Distributions for Fragment Size at Site Cu2SD



68

cumulative forms of the fragment size frequency distributions for both the observed data

and the Weibull model. Referring to Figure 3.8:

®  The observed cumulative frequency distribution exhibits a small “ knee ” structure
corresponding to the step-wise frequency shift in the observed frequency distribution;

®m the Weibull cumulative frequency model is a good approximation to the observed data
for all cumulative frequency values below the 75th percentile;

m if the Weibull cumulative frequency model is used above the 75th percentile, larger
than observed fragment sizes will result.

3.7.2.2 The Rosin-Rammler Particle Size Distribution

The traditional method for the determination of particle size is test sieving. Sieving
consists of passing a mass composed of a range of particle sizes through a series of nested
screens, each of incrementally smaller aperture size. After all the subject mass has passed
into the nest, the mass trapped upon each of the screens is weighed; these weights can
then be used to produce a plot of screen size versus mass percent. Equation 3.35 from the
previous section, which described the cumulative form of the Weibull distribution, and
defined the probability that the particle size variate takes a value less then or equal to x, is

here repeated as:

Fx) = 1 — exp Hei]} (3.37)

But for the test sieving methodology described above, the concern is not with particles
that have passed a given screen size, but rather with the particles retained on the screens.

In classical statistics, this probability value is obtained with the “ survival ” function
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[ Evans et al, 1993 ]. For the Weibull distribution, the survival function defines the

probability that the particle size takes a value greater than x is defined as:

- “6” 639

Since the goal is to determine the percent mass retained, both sides of Equation 3.38 are

S(x) = 1 - F(x)

multiplied by 100:

100 - 100F(x) = 100 exp Heij } (3.39)

Rearranging and taking the Naperian logarithm of each side results in:

100 x\"
m(m] = (6) 340

then taking the base 10 logarithm of each side results in:

O (. S | . — (l) (3.41)
8| " 100-100F(x) = nlex T8y ‘

which has a linear form (y = mx + b ); thus by plotting the left hand side of Equation 3.41
against the logarithm of particle size, the slope of the line, and hence the Weibull shape
parameter ( “n” ), can be determined by graphical interpolation. The Weibull scale
parameter readily determined by noting that when the left hand side of 3.41 is equated to
zero, 0 = x. Figure 3.9 shows how the application of Equation 3.41 upon the observed
fragment size data for site Cu2SD ( previously presented in both frequency and cumulative
frequency form on Figure 3.8 ) results in a line. Given that rock particles produced by

blasting, crushing, and grinding can be characterized with the Weibull distribution, then
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the following list explains the extreme usefulness of Equation 3.41 for test sieving
purposes:

1. The Weibull cumulative distribution, when modified into the form represented by
Equation 3.41, will plot as a line;

2. two points define a line;

3. therefore a sieving test consisting of a minimum of two sieves could be used to
produce a particle size distribution;

4. thus a particle size distribution can be obtained via a sieving test much more quickly.

These simple observations suggest imaging algorithms that could produce size
distributions at an extremely rapid rate; undoubtedly other researchers have investigated

this possibility. In any event, the Rosin-Rammler Equation is often presented in the
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following form [ Wills, 1992 ]:
100 - P = 100exp(bx ") (3.42)

where P is the “ cumulative undersize ” (% ), and b and n are “ constants ”. Following

the same methodology used to reduce Equation 3.39, Equation 3.42 can be rewritten as:

RN = 1 + logh (3.43)
og| In 100—P = nlogx og ;

Now comparing 3.43 to Equation 3.39 ( repeated directly below as 3.44 ), the function P

e (W =  gloex 1 (l] (3.44)
2| " T00-100F(x) = ek ERLE '

describing the “ cumulative undersize ” is equivalent to the Weibull cumulative distribution
function F expressed in % units ( 100 F(x) ). Furthermore, the Rosin-Rammler constant
“b ” can be expressed as a function of the Weibull scale and shape parameters. Thus the
Rosin-Rammler distribution is merely a disguised form of the Weibull cumulative

frequency distribution.

3.7.3 The F Distribution ( Fisher-Snedecor Form )

The probability density of the F distribution is given by [ Evans et al., 1993 ]:

(v+w)
r[ :

(3]

-’(v/m)(v/z) x(\,-2)/2

f(x) = = F:v, (3.45)

where:
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r = the Gamma function;
v, = shape parameters typically referred to as “ degrees of freedom ”.

The F distribution function is complicated, but it can be easily programmed into a personal
computer to investigate the following relationship for two independent samples of

normally distributed observations [ Evans et al., 1993 ]:

n, S

(nl —I)Gf
n, S§

(nz _1)0 -

~ F:n,m (3.46)

where n;,ny, S} ,S},and 07, 02 are the number of observations for the two sample

groups, the biased variances of the sample groups, and the variances of the sample
populations, respectively. If the population variances of the two sample groups are equal,

then the above relationship can be reduced to:

SZ
= ~ Fm (3.47)
$;

and the ratios of two independent unbiased sample variances taken from the same
population have a probability density distributed as an F function. This relationship is one
of the most useful in all statistics [ Kock and Link, 1971 ] and is the basis of analysis of
variance ( ANOVA ). The following example outlines the use of ANOVA towards an

investigation of rock strength sample data.

3.7.3.1 The Analysis of Rock Strength Variance
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The rocks at a total of 39 sites can be characterized with uniaxial compressive
strength. 22 of these strengths represent samples obtained at Gold mining sites; the
remaining 17 represent rock strengths at sites within Copper mines. The experimental
strength data is presented on Table A2 within the Appendix. Rock mass strength is a
fundamental parameter of the fragmentation modeling that will be subsequently presented
in Chapter 4. The models were developed by regression analysis ( Section 3.5 ), and
regression analysis is principally concerned about relationships between average values.
Thus before the model was developed, a “ fuzzy ” research hypothesis was formulated as:
“ Are the rocks at Copper mines from the same strength population as the rocks at Gold
mines? ” If not, then separate fragmentation models will have to be developed. From the
rock strength data of Table A2, a sample mean of 14,071 p.s.i. is readily calculated for the
Gold mine sites, and 10,849 p.s.i. for the Copper mining sites, so the rocks at Gold mines
exhibit about 30% more average strength than the rocks at Copper mines. But the sample
sizes are not equal. To determine whether these strengths are in fact from the same
population, a research model is formulated as follows:

1. Hypothesis: The two population means for rock strength are equal for Gold and
Copper mining sites; H : Hay = Hcu.

2. Alternate hypothesis: AH: lau # Heu.

3. Assumptions: Two groups of randomly selected strength samples obtained from
normally distributed populations.

4. Risk Level: ( Probability of rejecting a true hypothesis H ) --- to be subsequently
determined.

ANOVA is utilized to address this problem by: 1) Assuming all of the rock strength
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observations are from the same population; 2) obtaining two independent estimates of
rock strength population variance; 3) forming the ratio of the two population variances;
and 4) computing the F probability distribution function value corresponding to the
variance ratio value. The methodology of steps 2 through 4 are outlined below.

Obtaining independent estimates of population variance first involves the
determination of the total variation of the two groups of observations representing the
population. The total variation may be defined as:

Z(Xi -)_(8)2 + nZz(xi —ig)z = Z(xji —ig)z (3.48)

i=1 i=1 Ji

Viot

where the subscript j denotes the group, and i denotes the observation within the group;

X represents the “ grand mean ” ( arithmetic average ) of the observations within the

two sample groups:

n; +1n,

n; X, +n, X,
oy T Vel 3.49
; Y X ey (3.49)

i=1

all
]

The right hand side of 3.48 is equivalent to:

Z(xji —-’T[:;)2 = Z(in _ij)2 + Z(ij ‘ig) (3.50)

3o Ji 3i

expanding the terms on the right hand side of the above equality results in:

Y (x, -%,) {)‘i(xi -%,) +z;(xi —7(2)2]+[nl(i1 -%,) +n,(x, —is)z](3.51)

i i=1
The first quantity on the right hand side of the above equality is called the *“ within group

variation ” ( or the “ within group sum of squares ) and the final quantity is the “ between
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group variation ” ( or the “ between group sum of squares ). The total variation of the
observations within the two sample groups ( Equation 3.48 ) can now be expressed as :
Viot = Vg + Vp (352)

Transforming the above expressions into unbiased variance form ( Section 3.4.1 ) results

;(xﬁ —is)z [:1 (x,-%,) +i2::’(xi —,—(2)2—‘
(r11+—r12—1) B (n1 +n, _2) +
{n,(il —is)(j-:l)z (iz —is) -| s

where the denominators of the terms on the right of the equality are called the “ within
group degrees of freedom ” and the “ between group degrees of freedom ” respectively.
The previous equation can be expressed as the following simplified representation:

S,y = S, s, (3.54)
The variances to the right of the above equality can now be divided and the variance ratio

relationship ( Equation 3.47 ) can be utilized:

«»n | w»n
iNlcrN

~ F:j-1,m+n -2 = F:1,37 (3.55)

and the between to within group variance ratio of the two sample groups representing 22
Gold sites and 17 Copper sites is distributed as an F probability function with 1 and 37
degrees of freedom. Figure 3.10 shows the graphical layout to explain how the F

distribution is used to assess the risk associated with the hypothesis that the population
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means of Gold and Copper site rock strength are equal.
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Figure 3.10 - F distributions with 1 and 37 degrees of freedom for the Graphical
Determination of Risk Level for Analysis of Variance on Site Rock Strengths
The relative frequency values shown were obtained by utilizing Equation 3.45 with 1 and
37 degrees of freedom; the frequency curve was subsequently numerically integrated to
obtain the cumulative probability values. Equation 3.47 was utilized to determine an F-
ratio value of 2.15 for the data. Now referring to Figure 3.10:

B 2.15 corresponds to cumulative frequency of 0.87, or an o ( risk level ) of 0.13, or
13 %;

B 50 87% of the time, the variance ratio of population rock strength will be less than or
equal to a value of 2.15;
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® this corresponds to an 87% certainty that the hypothesis H: lay = Hcu is the correct
decision;

® the risk of incorrectly deciding for the alternate hypothesis AH: [la, # co of unequal
means is 13%.

This result is peculiar in consideration of the fact that Gold and Copper deposits are
hosted by different types of rock. The Gold mines are predominantly Carlin type
replacement deposits, where the ore is hosted in silica flooded carbonate rich rocks that
were originally limestones; certain other of the Gold mines appear to be of epithermal vein
type, where the ore occurs in silica rich veins and silica flooded stockworks cutting
through piles of older volcanic rocks. The Copper mines are always massive porphyry
type, where the ore occurs either directly within massive acidic intrusives or older rocks
invaded by the intrusives, or both. But rock strength ( as determined via drill penetration
rates as presented in Chapter 6 ) is only one of the variables utilized by the fragmentation
model ( Chapter 4 ); the other required variable is the pre-blasted rock mass chunk size,
determined via image analysis as presented in Section 3.4.5 above. When ANOVA is
applied to the rock mass chunk size scale parameters observed at the Gold and Copper
mines ( Table A1 Appendix ) , there exists a 76% probability that the average rock mass
chunk size scale parameters for mines excavating rock containing the two different types
of commodity are from the same population. Then for the time being, ANOVA shows
that the average strength and chunk sizes of the rock mass at Gold and Copper mines will
not require partitioning into two separate populations for the purposes of accurately

modeling fragmentation.
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3.7.4 Student’s t Distribution

The probability density of Student’s t distribution is given by [ Evans et al., 1993 ]:

{r[(v+1)72]}

fx) = =ty (3.56)
(nv)T(v/ 2)[1+(x2 / v)]( !

where v is a shape parameter referred to as the degrees of freedom. The t distribution is
another sampling distribution, and it possesses a useful relationship for a random sample

of normally distributed observations [ Evans et al, 1993 ]:

x—U
t:n-1 ~ — (3.57)
S/4n-1

where X and S are the mean and biased standard deviation of the sample of size n, and L
is the population mean. Thus a population mean estimated from n observations is
distributed as a t probability function with n - 1 degrees of freedom. 3.57 can be
rearranged as:

L o=  F = Steo~1 (3.58)

fn—1
and the t distribution can be utilized to determine a “ one sided ” confidence interval
associated with the mean population value; by an argument based upon the symmetry of
the distribution a two-sided confidence interval for the population mean can be
determined, as in:

o & P S(t:n-1) (3.59)
3 = |

As an example, the t - distribution is utilized to estimate a two sided confidence interval
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about the grand population mean for the rock strength observations discussed in the
previous section. From Table A2 ( Appendix ), the mean and the biased standard deviation
for the 39 rock strength samples can be determined as 13,022 p.s.i. and 8,144 p.s.i.
respectively. If a 90% confidence level is chosen for the estimate of the mean population
strength, then cumulative relative frequency limits that bound 90 % of the area below the
frequency distribution must be selected. Conveniently selecting the area bounded by the

5th and 95th percentile cumulative values, as shown on Figure 3.11:
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Figure 3.11 - t Distributions with 38 Degrees of Freedom for Graphical
Determination of Confidence Intervals for Rock Strength Population Mean

B 95% of the time, the x variate will be less than or equal to 1.65;
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B 5% of the time, the x variate will be less than or equal to -1.65;
B thus 90% of the time, the x variate will be > -1.65 and < 1.65;
This corresponds to 90% certainty that the population mean of rock strength ( p.s.i.) for

all open pit Gold and Copper mines is somewhere within the interval defined by 3.59:

8,144(1.65)
m = 13,022 + ~ = 13,022 + 2,179 (3.60)

One other important property of the t distribution is used to determine confidence
and prediction intervals for regression analysis. For two sets of normally distributed

observations [ Evans et al, 1993 ]:

(il _i2)_(ul_u2)
t:n+n -1 ~ = = (3.61)
6,8, +0,8; 2 i+i
n;+a,=2 n, n,

A large number of regressions are presented within the following chapters. Occasionally
estimated variables determined via regression had to be recombined into functional
expressions. The following sections show how the accuracy of an individual regression is
represented, and how the error of functional expressions containing more than one

estimated variable was assessed.

3.8  Representation of Regression Analysis Results
Typically, a regression will be presented with certain terms and statistics
representing the accuracy of the regression. For example, Equation 7.36 from Chapter 7

estimates stemming ( ft ) from multiple variates consisting of the drill diameter ¢ ( inches )
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and above grade energy E., ( MJ ) as:

stm=4.983 (¢) - 0.00761(E, ) - 20.760 [R>= 0.953,Sig. F=0.000] (3.62)
[ 0.0000 ] [0.0001] [0.0000]

The meaning of the squared correlation ( R”) was presented in Section 3.5.2 above.

“Sig. F ” is the F distribution probability value that the estimated stemming values are not

related in linear fashion to the observed values. The values within the square brackets

below the variates and constant are the individual t distribution probability values for the

terms directly above; for example the 0.0001 below E,,; indicates that the probability that

the predicted E., value is not linearly related to the observed E., value is 0.01%.

3.9  Uncertainty Analysis

In certain instances, particularly for the machine modeling work performed for
Chapter 5, a number of different estimated variables ( originally developed through
regression analysis ) had to be subsequently recombined into functional expressions; for
example as in:

P P(x,y, z) (3.63)

where P is some function acting upon the independent variates x, y, and z. Then the
standard deviation of the value predicted by the functional expression was estimated with

the following method [ Holman, 1978 |:
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2 2 21/2
@) o (Za) (2 oo
op a ax O * aycy 3z 07 '

where oy, Oy , and o, are the standard deviations ( Equation 3.5 ) of the x, y, and z

variates, respectively.

A considerable body of regression analysis had to be performed to develop a

model for rock mass fragmentation; this work is the subject of the very next Chapter.
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ROCK MASS FRAGMENTATION MODELS

“ 151. Resources Control

a. In establishing requirements for resources control, priorities must be
assigned to specific items to be denied the insurgent. Restrictions on
certain items may be injurious to the attitude of the population, such as
the control of fertilizer in a primarily agrarian area. Two methods may
be employed in controlling materials ~

(1) Price Regulation.

(2) Rationing.

b. Additional controls must be employed for materials that can be used
as expedients in manufacturing improvised explosives. Adequate control
of these items will depend upon properly trained security personnel
positioned at the production and distribution facilities for these sensitive
items.

c. The use of resources control measures is sensitive and must be
carried out with utmost discretion. Infringement upon the rights of the
local population, through violence or needless oppression, will lose the
population to the insurgent. Local law enforcement agencies should be
closely supervised at all times during the operation. ”

United States Department of the Army ( 1965 )
Field Manual EM 31-20 : Special Forces Operational Techniques

There are two goals for the work presented in this Chapter:

Establishing an accurate image-based model for rock mass fragmentation;
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2. the determination of a specific energy index term for the explosive mode of rock mass

size reduction.

The image-based model can then be utilized to predict and design rock mass

fragmentation, and the specific energy index term can be used for the excavation cost

modeling outlined in Chapter 2. The following list summarizes the path of the research.

The section references contain the detailed information:
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1. The terminology of open-cast explosive blasting is presented ( Section 4.1 );
2. ahypothetical substance is utilized to gain insights into fragmentation ( Section 4.2 );

3. aprominent theory for the prediction of the average fragment size resulting from
blasting a rock mass with explosive is reviewed ( Section 4.3 );

4. acontemporary state of the art model that is based upon the aforementioned mean
fragment size theory for predicting the distribution of fragment sizes resulting from
blasting is reviewed ( Section 4.4 );

5. fragmentation distributions predicted by the state of the art model are compared to
distributions obtained via the SPLIT imaging system, and the compared parameter
values were found to be at high variance ( Section 4.5 );

6. higher accuracy fragmentation models are developed that are in better agreement with
the results obtained from the SPLIT imaging system ( Sections 4.6 and 4.7 );

7. the development of the specific energy index term for the explosive mode of rock
mass size reduction is summarized ( Section 4.8 );

8. two different estimators for fragment size distribution scale parameter are developed
( Section 4.9 );

9. aformulation for the cost of the explosive mode of size reduction is presented
( Section 4.10).

4.1  Open-Pit Blasting Terminology

Before fragmentation is discussed, a brief preview of the terms used to describe
open pit blasting will be necessary. Figure 4.1 presents an oblique view containing the
principal dimensional terms, together with terms describing certain problematic features.
On Figure 4.1 fragments created by a previous blast on the same bench level have been
removed, leaving an exposed bench face. Bore holes have been drilled and loaded to
become blast holes for the subsequent bench blast. To simplify the presentation, only a

single row of three blast holes are shown. The principal dimensional terms are defined as
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follows:

®  The bench height is the vertical height from the bench toe to the bench crest;

m the spacing is the horizontal distance between adjacent blast holes, taken parallel to the
bench crest;

B the burden is the horizontal dimension from the blast hole centers to the bench toe;

® the lengths of the stemming and powder column compose the total length of the blast
hole;

B the subdrill is the vertical dimension between the bottom of the blast hole and the
bench toe;

m the face slope is the angle between the bench face and the vertical.
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Figure 4.1 - Open Pit Blasting Terminology
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Before the physical features presented on Figure 4.1 can be explained, the “powder factor”
term needs to be defined. The powder factor relates the explosive mass per blast hole to
the quantity of rock subsequently affected by the detonation of the explosive. In North
America, explosive mass is expressed in pound units, and rock volume assumes units of
cubic yards. Outside of North America, the term “specific charge” is used in place of
powder factor, and the units change to kilograms and cubic meters. In either event,

powder factor or specific charge is defined as:

Fpw = 4.1)

where M. is the explosive mass per blast hole, and Vo, is the rock mass volume. The
“v ” subscript on the F,, term denotes that the explosive mass is specific to rock volume,
as opposed to rock weight. The rock mass volume is typically determined as equivalent to
the quantity ( burden x spacing x bench height ).

Stumps, overhangs, overbreak and backbreak are problematic physical features of
open-cast blasting. Typical causes and effects of these features as depicted on Figure 4.1
are:

®m Insufficient subdrill distance and/or powder factor can cause hard stumps which can
damage tires and inhibit the mobility and efficiency of loading machines;

B insufficient stemming and/or powder factor can cause overhangs which produce
hazardous working conditions below the bench face;

B excessive powder factor can cause overbreak and backbreak, which produce
hazardous working conditions above and below the bench face and also adversely
affect slope stability.
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4.2  The Blastonium Construct

Explosive fragmentation is not well understood. This section defines a hypothetical
substance ( Blastonium ) to gain insights into how a brittle mass fragments. The explosive
induced size reduction of this substance was then subsequently compared to that predicted
by the prominent existing theory.

Explosives reduce the size of mass by creating new surface area. The physics of
the area creation process are not clear; currently up to 9 different theories attempt to
explain the fragmentation process [ Atlas Powder Company, 1987 ]. The resistance of
rock mass to the explosive mode of size reduction appears to be a multivariate function of
the:

1. Energy content of the explosive;
2. spatially distribution of the explosive within the rock mass volume;

3. strength-volume relationship of the rock mass;

4. size and spatial distribution of pre-existing flaws and fractures within the rock mass
volume;

5. spatial distribution of density within the rock mass;
6. magnitude and direction of the local gravity vector.

The roles played by gravity and mass density variation within explosive
fragmentation are problematic. Apparently rock mass fragmentation can occur in two
separate time episodes: 1) Directly after detonation, as the chemical energy of the
explosive is transformed into kinetic energy and mass is accelerated against the direction
of the gravity vector, and 2) after the potential energy of the system is reconverted back

into kinetic energy, as mass is re-accelerated in the direction of the gravity vector and
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brought to rest.

The fragmentation of a brittle mass characterized by a uniform distribution of
equally sized flaws and a variable strength-volume relationship is presented in the
hypothetical construct below. Explosives are idealized to be perfectly distributed within
this substance, and moreover the distributed masses of explosive are theorized to all have
simultaneous detonation initiation ( timing ). The effects of gravity and mass density are
neglected.

Consider a hypothetical brittle substance called Blastonium. Atoms of this
substance always arrange a cubic space lattice, and the space lattices always form perfectly
cubic crystals. The strength of Blastonium is defined such that when 1 kilogram of T.N.T.
is detonated at the geometric center of a 1 m’ crystal, then exactly three fracture planes
are formed at right angles to one another. The fracture planes propagate from the center
out through the crystal moving perpendicular to the outside surfaces such that all of the
energy of the T.N.T. is totally expended when the three fracture planes breach the outer
surface. Figure 4.2 shows the 3 fracture planes ( depicted as dashed lines ) resulting from
the detonation. The total fracture surface area created would be 3 m’, and therefore the
fracture area factor with respect to powder mass ( F, ) for Blastonium is defined to be a
constant 3 (m’/kg ). Detonating 1 kg of T.N.T. in a Blastonium cube of size 1 meter
results in exactly 8 smaller crystals, each of side 1/2 meter and volume 1/8 m’. The
volumetric powder factor for this first stage detonation is 1 ( kg/m® ). Explosive can now
be introduced into the centers of each of the 8 cubes formed by the first stage blast. The

per cube volume is now 1/8 m’, so using the stage 1 powder factor results in a load of 1/8
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kg per cube. This mass of T.N.T. will now have to form a total of 3 /4 m® of surface area

inside each cube. But since cracking Blastonium consumes exactly 3 m” of surface area per
kilogram of T.N.T., the 1/8 kg. per cube load will only form 3/8 m*. So an assumption of
constant powder factor with respect to volume results in a fracture area deficit of 3/8 m>

for the 2" stage blast.

= /I
=
Me | | |
1 meter = I ! —+1 |
|
P V— ' -
| — ~ exe’
‘\_"\
1 meter —=

Figure 4.2 - The 1 meter Cube of Blastonium before the Stage 1 Detonation

To create the correct amount of surface area the load is doubled to 1/4 kg. per cube; this
corresponds to a powder factor of 2 (kg/m’ ). After the explosive in each of the eight
cubes of size 1/2 meter is detonated, a total of 64 cubes of side 1/4 meter and volume 1/64
m’ are formed. Each of these cubes requires 3/16 m” of fracture area; now loading for
the constant area factor of 3 ( m’/kg ), each cube will require 1/16 kg of T.N.T.,
corresponding to a powder factor of 4 (kg/m’ ). In theory this cube cracking process can
be continued on down to the level of individual molecular lattices; but already the

pertinent sequences have formed and conclusions may be drawn. Table 4.1 below
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summarizes the results of 4 stages of reduction creating 4,096 cubes from the original 1
meter cube. Alternately the 4096 cubes could have also been produced by a single stage
blast by evenly distributing a total of 4 kg of explosive within 512 even portions of the
original Blastonium volume, and then detonating all of the explosive at the same time.
Many different conclusions may be drawn from the information within Table 4.1. Perhaps
the most important is to reiterate that for Blastonium, the per stage area factor with
respect to volume doubles for each increasing stage of detonation, and this then requires
that the powder load be doubled. The information in Table 4.1 can also be utilized to form
an expression for “ average ” fragment size. This expression can then be compared to
empirically derived expressions for the determination of average fragment size, which are
presented in subsequent sections of this Chapter.

Table 4.1 - The Size Reduction of Cubic Blastonium

stage of size reduction 1 2 3 4
cube size L (m) 1/2 1/4 1/8 1/16
total cubes formed 8 64 512 4096
volume per cube (m’) 1/8 1/64 1/512 1/4096
total area to form cubes A¢ 3 6 12 24
(m®)
total fracture area A (m”) 3 9 21 45
mass TN.T. M. (kg) 1 2 4 8
total mass T.N.T. MY (kg) 1 3 7 15
per stage powder factor with 1 2 4 8
respect to volume Fyy
(kg/m® )
per stage area factor with 3 6 12 24
respect to volume F,, ( 1/m )
per stage area factor with 3 3 3 3
respect to powder Fg,
(m’/kg )
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From the L , M., and Mém entries in Table 4.1, a formulation for “average” fragment

size (m) can be expressed as:

L = —— (4.2)

and for which if M = M, then:

L=

(Sl

(4.3)

To determine the average cube size that would result from doubling the mass of T.N.T.

distributed within the Blastonium, M =2M,, and:
L =— (4.4)

The percent decrease in average fragment size from doubling the explosive mass may now

be expressed as:

AL L-L’
= = 033 = 33% (4.5)

4.3  The Kuznetsov Mean Fragment Size Theory

In the early 1970’s, the Siberian mining engineer V. Kuznetsov published a
functional expression for determining the mean size of the fragments that result when
explosives are detonated within a rock mass. Kuznetsov determined the form of his

expression via regression analysis upon data obtained from laboratory tests, mines, and
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underground nuclear explosions. Therefore his expression was validated over a wide scale
of blasts; the values of the rock test volumes used in the blasts differed by about four

orders of magnitude. The form of the Kuznetsov Equation is [ Kuznetsov, 1972 ]:

_ e

X = A (4.6)
Mg.63

where:

X = mean fragment size (cm );

A = rock mass “hardness” parameter;

Vi = rock mass volume ( m’ );

M. = equivalent mass of TNT applied to rock volume ( kg ).

Kuznetsov's hardness parameter attempts to account not only for the physical strength of
the rock, but also what he termed the “fissuring” present within the rock volume prior to
the blast. To validate his equation, Kuznetsov proposed that his hardness parameter would
have to have a total range of 12 units. Table 4.2 summarizes the range of hardness

parameters published by Kuznetsov:

Table 4.2 - The Kuznetsov Hardness Parameter and Associated Rock Physical

Characteristics
Rock Physical Characteristics Kuznetsov Hardness Parameter
“ extremely weak rock ” 1
“ medium hard rock ” 7
“ hard, but highly fissured rock ” 10
“ very hard, weakly fissured rock ” 13

Kuznetsov’s attempt to quantify both the strength and structural features of the pre-
blasted rock mass with a single parametric value is summarized by the following

reservations he expressed:
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1. There appeared to be no concise relationship between the rock's physical measure of
hardness and the mean fragment size of the blasted product;

2. there was no clear association between the average fragment size and the spatial
orientation of joints and fractures within the pre-blasted rock.

In addition, Kuznetsov noted that the applicability of his expression for the mean fragment
size ( Equation 4.6 ) was “ doubtful ” if:

3. asmall number of fragments resulted from a blast;

4. a rock mass was repeatedly broken by blasting;

5. arock mass was composed of different types of rocks.

The theoretical nature of Kuznetov’s Equation is summarized in list items ( 1 ) and (4 )
above. Because the “ hardness ” and flaw density of rock mass can quickly change on the
spatial-volumetric scale, it is virtually impossible to obtain physically identical test volumes
for experimentation. But it will be useful to determine the percent decrease in average
fragment size predicted by the Kuznetsov Equation resulting from a doubling of explosive
mass for a rock mass of constant “ hardness ” and volume. When the explosive mass is

doubled the average rock fragment size ( Equation 4.6 ) becomes:

0.80 0.80
V, V,
X = A % = A ——%33_ 4.7)
(ZMe) : 154 Mg

And the percent decrease in average fragment size becomes:

e
Ax X=X MK L) = 035 = 35% (4.8)
X x o 1s¢) 7 0 T |
A

M 3.63
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This result is comparable to the 33 % decrease obtained for Blastonium ( Section 4.2 ),
for which the explosive was theorized to have perfectly uniform distribution. But curiously
the form of Kuznetsov’s equation does not account for the spatial distribution of
explosive. The underground thermo-nuclear blasts cited by Kuznetsov are examples of
explosive mass concentrated down into a point source. The mining blasts he studied were
evidently a Russian ANFO type explosive contained within vertical drillholes. The details
of the laboratory blasts cited by Kuznetsov are unknown; but for the time being it will be
concluded that the mean fragment size resulting from blasting rock mass is independent of
the spatial distribution of explosive.

The uniformity, or size consistency, of the fragment sizes produced by a blast does
not appear to be independent of the spatial distribution of the explosive. This topic is

covered in Section 4.6.4.

4.4  The Kuz-Ram Fragmentation Model

“ Cunningham realized that the Rosin-Rammler Curve had been
generally recognized as a reasonable description of fragmentation for
both crushed or blasted rock. One point on that curve, the mean size,
could be determined with the Kuznetsov Equation. ”

Konya and Walter ( 1990 ) ~~~ Surface Blast Design

Claude Cunningham, an English mining engineer who worked in Africa, made
significant contributions to the field of explosive induced fragmentation. These
contributions have subsequently become known as the “ Kuz-Ram ” model, because the

model is based upon the Kuznetsov mean fragment size theory and the Rosin-Rammler
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particle size distribution. The principal characteristics of the Kuz-Ram model are set forth
on the following list, and the material presented within the referenced sections contains the

detailed aspects of the information:

1. The form of the basic Kuznetsov equation was altered such that it would incorporate
both “ powder factor ” and “ weight strength ” terms commonly utilized throughout
the explosive industry of the Western world ( Section 4.4.1 );

2. the rock mass “ hardness ” term proposed by Kuznetsov is replaced by a more
extensive term describing the “ blastability ” of the rock mass ( Section 4.4.2 );

3. the provision of analytic expressions to help estimate the shape and scale of the
fragment size distributions resulting from blasting ( Section 4.4.3 ).

4.4.1 The Kuznetsov Equation in Powder Factor Form

Cunningham put the Kuznetsov Equation into a form that would incorporate the
powder factor term, and made a further simplification to allow for the use of explosives
other than Tri-Nitro-Toluene [ Cunningham, 1983 ]:

19/30
-08 115
) Mm L/6 ( )

= ARy e (222 4.9)

E

the mean fragment size (cm );

the "hardness factor" (cm/m3 )

mass explosive used per blasthole ( kg ).

relative weight strength of explosive used in blast ( dimensionless ).
[ relative weight strength of T.N.T. =115, ANFO = 100 ]
volumetric powder factor ( kg/m3 )

t‘ng> |
no

R
1l

4.4.2 The Rock Mass Blastability Factor
Cunningham's research suggested that the simple rock hardness factor proposed
by Kuznetsov was inadequate for modeling fragmentation. Adapting a rating system

devised by P.A. Lilly [ Lilly, 1986 ], Cunningham proposed that the following expression
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be adopted to replace the Kuznetsov rock factor. In addition to hardness, the expression
also considers the density, mechanical strength, elastic properties, and the pre-blast

structure ( joints and fractures ) of the rock mass [ Cunningham, 1987 ]:

A = 0.06 (RMD + JF + RDI + HF) (4.10)
where:
RMD = the rock mass descriptor - Powdery/Friable = 10
= - Vert. Jointed = JF
“ - Massive = 50
JF = JPS + JPA
JPS = Vertical Joint Spacing - 0.1m = 10
“ - 0.1 to MS = 20
= - MS to DP = 50

( Where MS is oversize (m ), and DP is drilling pattern size (m ) , assuming DP > MS )

JPA = Joint Plane Angle - Dip out of face = 20
i - Strike Prp. face = 30
o - Dip into face = 40

RDI = Rock Density Influence : RDI = 25(RD-50)
( Where RD = Rock Density ( t/m3 )

HF = Hardness Factor : If E<50GPa,HF = E/3

If E>50GPa, HF = UCS/5 (MPa)

4.4.3 Estimators for the Parameters of the Weibull Distribution

Cunningham’s most significant contribution to the science of fragmentation was
the formulation of predictors for determination of the shape and scale parameters for the
fragment size distributions resulting from explosive blasting. The basis of the Kuz-Ram
model is the Rosin-Rammler size distribution, the popular size distribution utilized

throughout mining science for describing a range of particle sizes. The information
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already presented in Section 3.7.2.2 demonstrated that the Rosin-Rammler distribution is

identical to the Weibull distribution, the cumulative form of which is repeated below as:

n
X
F(x) = 1 — exp|- [E] (4.11)
where:
F(x) = fractional volume percent passing (0 <F(x) < 1.0);
X = fragment size;
n0 = distribution parameters defining the distribution shape and scale,

respectively.

Cunningham’s development of the Kuz-Ram model appears to be based upon an
approximation that the mean fragment size will occur at the 50th percentile value, or the
median value, of the Weibull cumulative frequency distribution. But as the information
presented in Section 3.7.2 demonstrated, fragment size distributions always appear
skewed to the right ( tailed to the right ), and for such skewed distributions, the mean size
will be greater than the median size. But by substituting the mean fragment size (X ) from
Equation 4.9 for fragment size ( x ) in Equation 4.11 , and equating F(x) to 0.5 ( the 50th

percentile, or median value ) and solving for the scale parameter, Cunningham obtained:

X
0 = W (4.12)

Therefore the mean fragment size can be determined with Equations 4.10 and 4.9, and the
distribution scale parameter ( 0 ) can be determined, provided the shape parameter (n ) is

known. Using regression analysis performed upon data derived from blasting operations,
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Cunningham proposed the following complex expression for the shape parameter

[ Cunningham, 1987 I:

S
— 01
(22 N B) i (1 w) abs(BCL-CCL) o (L) e
- 2-14—|Y—= [1-— +0. — ;
. D)| 2 B L H (1)
where:
D = Hole diameter ( mm );
B = burden (m );
S = spacing (m );
BCL = bottom charge length (m );
CCL. = column charge length (m );
L = total charge length, or powder column ( m );
'Y = standard deviation of drilling accuracy (m );
H = bench height (m ).

The BCL and CCL terms above account for two different types of explosive within the
drill hole.
4.5 Weibull Distribution Parameter Comparisons: SPLIT Vs. Kuz-Ram

To investigate the applicability of the Kuz-Ram model as a predictive tool for
estimating the scale and shape parameters ( Equation 4.11 ) of the fragment size
distributions resulting from blasting, the Kuz-Ram estimators for distribution shape and
scale were compared to the size distributions sampled with the SPLIT system for fragment
delineation.

A crucial aspect of the Kuz-Ram model is the determination of the rock mass
blastability factor, presented in Section 4.4.2. These factors were not determined from
field observation, but rather from visually observing scaled rock mass cell still images

some time after the video tapes were recorded. The blast, strength, and cell image data
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used to characterize these 20 sites are included in Table Al of the Appendix. On all of the
subsequent plots, the shorter alphabetic labels ( cross referenced to actual mining sites
within Table Al ) are used to prevent plot label “clustering” and facilitate the identification
of the different mining sites.

Relationships between the fragment size Weibull distribution parameters
determined by the SPLIT system and predicted by the Kuz-Ram model are shown on
Figures 4.3 and 4.4, which compare the scale and shape parameters, respectively. The
95% prediction intervals are included in the form of upper and lower dashed-line limits; in
conjunction they form a 95% prediction band for any future observation on the Y variable
(SPLIT ) for any new X variable ( Kuz-Ram ) value. The Equations of the best fitting
lines shown on Figures 4.3 and 4.4 are respectively:

0.0389 (Bkr ) +3.419 [R* =0.321, Sig. F=0.009 ] (4.14)

eSI’L]T

nNspLIT -0.075 (nxr ) +1.571 [R® = 0.007, Sig. F=0.727 ] (4.15)
where Osprir , nspur and Okr , nkr are the scale and shape parameters for the Weibull
distributions describing the distribution of fragment size, as determined by the SPLIT
system and the Kuz-Ram model, respectively. The R’ values and F statistics shown for
these two equations alone are sufficient to form a conclusion; instead the regression
accuracy will be interpreted by simply visually observing the plots. Figure 4.3 shows that:
®m The scale parameters for the sites predicted by the Kuz-Ram model range from 10 to
90 inches, and the scale parameters derived from the SPLIT system range from 2 to 8

inches;

®m the total width of the 95% prediction band is about 6 inches.
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Figure 4.4 shows that:

®  The shape parameters for the sites predicted by the Kuz-Ram model range from 0.5 to
1.25, and the scale parameters derived from the SPLIT system range from 1.2 to 2.0;

m the total width of the 95% prediction band is about 1 complete unit of shape
parameter.

Conclusions: Fragment size distribution scale and shape parameters, as estimated by the
Kuz-Ram model, do not appear to be accurately correlated to those sampled by the SPLIT
imaging software; therefore the SPLIT software, used in conjunction with the Kuz-Ram

model, probably cannot be used for designing and predicting rock mass fragmentation.

4.6 A New Model for the Explosive Induced Fragmentation of Rock Mass

The general nature of rock mass size reduction via explosives is presented on the
frequency plots presented on Figure 4.5, where the average rock mass cell “chunk” size
frequency distribution is plotted along with the corresponding average fragment size
distribution which results from blasting the rock mass. The “chunk” size distribution is a
hypothetical construct meant to represent:

1. A careful disassembly of the rock mass volume into its constituent mass chunks that
are bounded by pre-existing fracture surfaces;

2. moving these mass chunks through a large screening system to obtain the size
distribution.

The plots were produced by utilizing the average Weibull distribution scale and shape
parameter values for both the rock mass chunks and fragments at the 20 sites listed in

Table Al ( Appendix ). Referring to Figure 4.5:
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Figure 4.5 - Average Weibull Frequency Distributions of Size for the Rock Mass

Cells and Fragments Composing the Experimental Data Set

Even though the average shape parameters (“ n ™) of the two curves are similar, the
average scale parameters ( “ 0 ) are significantly different, and thus the use of shape
parameter as a predictor of fragmentation will be meaningful only within the context of
scale parameter;

the modal sizes ( the most probable values taken at the curve peaks ) of the pre-blast
rock mass cell chunks and post blast fragments are about 12.5 and 2.5 inches,
respectively;

on average, the total size range of the chunks composing the rock mass cells is about
120 inches, and the range of the fragment sizes produced by blasting a cell is about 24
inches;

therefore on average, the blasts performed upon the rock mass cells to produce the
fragments reduce the modal sizes by a factor of 5 and reduces the size range by a
factor of about 5.
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The cumulative forms of the distributions are obtained by integrating with respect to
screen size, and these are presented below in linear form on Figure 4.6. Both axis have

been transformed via the techniques already presented in Section 3.7.2.2;
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Figure 4.6 - Average Rosin-Rammler Size Distributions for the Rock Mass Cells
and Fragments Composing the Experimental Data Set

and information presented in this same section showed that the shape parameter is
equivalent to the slope of the line, and furthermore that regardless of shape parameter
value, the base 10 log of the distribution scale parameter can be obtained at the X
intercept of Y =0. Figure 4.6 shows some of the same information as that presented on
Figure 4.5, except now the minimal difference between the shape parameters ( i.e. the line

slopes ) is much more distinct. On average, the process of blasting a mass of rock into
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fragments has three principal characteristics:

®m  The total size range is reduced by about five ( obtained from invlogio ((2.08 + 0.30) -
(1.40 + 0.30));

B a very small increase in shape parameter, and hence uniformity of size ( obtained from
visual observation of line slopes );

B adecrease in scale parameter of about five ( invlogl0 (1.4 - 0.7) ).

These results suggest that an empirical model for the prediction of fragmentation from
blasting will have to be principally concerned with some function of reduction ratio, where
such ratio is concerned with either range size, modal size, or scale size. Scale size is the
logical candidate because it is a parameter of the Weibull distribution. But before the
development of such a model can proceed, the relationships between rock strength, rock
volume, and time must be investigated. Evidently, certain of these relationships were

previously investigated by Waloddi Weibull.

4.6.1 A Proposed Time Domain Form of Weibull’s Strength - Volume Relationship
An expression that relates the strength of a brittle mass to the mass volume is

[ Weibull, 1939 ]:

S V
m log o [é} = log1o (7?] (4.16)

where S, is the strength of the brittle mass at volume V, , S; is the strength at volume V3,
and m is a material constant. Because Weibull showed that an inverse relationship exists
between rock mass strength and volume, the units of the material constant will have to

assume a negative value.
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For the purpose at hand, it is desirable to obtain the strength of the rock mass
volume, or rather the resistance of the rock mass to the explosive mode of size reduction.
Fortunately, uniaxial compressive strength ( UCS ) data exists for many of the rocks at
the blast sites. Conveniently S; can then be taken as the rock mass test core UCS value,
V| as the test core volume, and V; as the rock mass volume. Clearly the explosive mode
of size reduction is much different than that used to obtain the uniaxial compressive
strength of a test core, primarily because of time scale differences. The test cores were
subjected to a standardized compressive strain rate of 0.0003 in/sec, and the time to core
failure averaged about 4 minutes. If the time period of the explosive event ( shock wave
and mass heave ) is approximated as about 4 sec, then the scale difference of time
duration averages about 60. Therefore it is proposed that for the purposes of estimating
the fragmentation resistance of a rock mass, a factor be included on both sides of Equation

4.16 to transform Weibull’s relationship into the time domain:

S A%
t mlogig [—S—;-] = t logig (7?) (4.17)

4.6.2 A Proposed Relationship between Explosive Energy and Size Reduction
Conveniently a product of strength and volume is energy. Equation 4.17 can be
solved for the product of the two known quantities of strength and volume ( S; (MPa) and

V, (m®) respectively ):

Kl(slmtv{‘) = Kl(szmtvl't) = K, (4.18)
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where K, is a dimensional constant necessary to express K; in units of energy ( here MJ ).

Equation 4.18 can be multiplied by a dimensionless function of reduction ratio:
KS;™ Vs f(R) = K152 Vi f(R) = Kyf(R) (4.19)

where R is defined as the ratio of some characteristic dimension representing the rock

mass chunk and fragment screen size respectively:

R = -= (4.20)
Xf

The energy expended ( E. (MJ ) ) in an explosive size reduction process can now be

equated to the left hand side of Equation 4.19, following the substitution of Equation 4.20

for the reduction ratio R:

E, = Ki;S;™ v, " f{x—“‘iJ = Kzf[ﬁﬂj = wa[x—‘m] 421)
Xf Xf Xf

where the strength-volume energy product term ( K, ) may as well be called the “ Weibull
Blast Index ”. Ky, ( MJ) is theorized to be a constant over certain ranges of both strength
and volume for rock mass.

Despite the crudity of the above derivations, it can simply be concluded that if
Equation 4.21 has a physical basis, then regression analysis performed upon empirical data
will result in accurate determinations for the material and timing constants, as well as the

form of the function acting upon the dimensionless reduction ratio.

4.6.3 Validation of the Weibull Blasting Index Fragmentation Model

A series of multivariate non-linear regressions were used upon the blast data for
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the 20 sites to produce the following Equation:

) 0 . (0
By = 0185 s0141y08! (—@J = K, [~—‘mj [R’=0826]  (4.22)

Of Of

where:

éag = the estimated above grade ( excluding the subdrill ) explosive energy
(MJ);

Vmm = the rock mass volume (m’ );

S = the uniaxial compressive strength of a core bored from a fragment of the
rock mass volume subsequent to the explosive event ( MPa );

Om, O = the Weibull scale parameters of the rock mass chunk and fragment screen
size distributions, respectively ( in );

ﬁw = the estimated “ Weibull Blast Index ” ( M7 ).

Back-solving Equation 4.22 for fragment size results in an estimated fragment screen size

distribution scale parameter of :

(4.23)

then when éf is linearly regressed back against the scale parameter observed with the

SPLIT system, a squared correlation (R*) of 0.51 results. Equation 4.23 predicts the

following percent decrease in scale parameter for a doubling of explosive energy:

. 6
A8 K F
1
=L = —f‘g(1 = —j = 050 = 50% (4.24)
O¢ > Om 2
Egg

which is inconsistent with the 35% result obtained for Kuznetsov’s mean size equation

( Equation 4.8 ). For Equation 4.24 above, the assumption that X = 0 was utilized;
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which seems entirely reasonable for a differential expression.

Conclusions: The 50% reduction result predicted by Equation 4.24 above is excessive
when compared to the prominent existing theory. Evidently the Equation 4.21 requirement
for inclusion of a dimensionless function of size ratio should be altered into a non-

dimensionless ratio of size functions, as in:

B, _ K3Slmt V2—t fl(xrm) -k ffl(zrm))
2\Xf

f5(x¢)

(4.25)

where the K; term is a new dimensional constant necessary to convert all of the other

terms on its immediate right into energy, and where the K&, term now differs from the
previous Ky, .

A pure physical derivation of Equation 4.25 will not be attempted, but it may
prove challenging to researchers elsewhere. If f; and £, are chosen as power functions,

then Equation 4.25 can be expressed as:

)™ )™

E, = C8&vS = s (4.26)
(x¢) (x¢)
and solved for the characteristic fragment screen size dimension as:
&2 26wl L ()
xp = CsGvyg == - (xf)e =R 4.27)
(Be)Cs (Ee)Cs

Utilizing the rock mass chunk and fragment screen size distribution scale parameters

( expressed in inch units ) and the above grade energy ( MJ ) to perform a regression such



as that indicated by Equation 4.27 results in:

0.077 ;0385 »0.152 0.152
A S V, §) ~ 50472 0
6f = 3358 = 2 B e [R*=0.57] (4.28)
Eag Eag

and back-solving for above grade energy results in:

Eyg

G183 - 0SS 60‘321 § 60'321
= . . _-m | _ ot _Ymm

which clearly cannot be manipulated into a dimensionless function of reduction ratio,

analogous to the form of Equation 4.21 above, because the units of the ng term are not

79

pure Mega-Joules, but rather MJ-in'” . Equation 4.28 now predicts the following

percent decrease in scale parameter for doubling of explosive mass:

» ¢ 0472 82152

AB w 50472 :
£ ag
— = 1 = —F7=5| = 028 = 28% (4.30)
Os . ¢ 0472 09152 [ (2)0'472]
w 0472
EY
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which appears more consistent with the 35% result predicted from the Kuznetsov theory.

Figure 4.7 shows the results of plotting the site scale parameters predicted by Equation
4.28 ( hereafter referred to as the “ Weibull Index ” model ) against those derived from
the SPLIT delineation software. The equation of the line including the pertinent statistics

are:

o3 0981(6f"") + 0098 [R®=0572,Sig F=00001]  (431)

On Figure 4.7:
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®m  The scale parameters for the sites predicted by the Weibull Index model range from

3.25 to 7 inches, and the scale parameters derived from the SPLIT system range from
2 to 8 inches;

® the total width of the 95% prediction band is about 5 inches.

12 —
g
= .
=3
(a9
(70}
g 8 —
=
:
(5]
2
°
()]
5
s 4
[~
=
A
2_
(<1
(&)
(7]

O 717 T 1 T T T T T ]

3 4 5 6 7 8

"Weibull Index" Model Scale Parameter (in)
Figure 4.7 - Comparison of Fragment Size Distribution Scale Parameters: SPLIT
Vs. Weibull Model

Conclusion: If Figure 4.7 is compared to Figure 4.3, it is apparent that the Weibull
distribution fragment scale parameters predicted by the “ Weibull Index ” model are more
accurate than those predicted by the Kuz-Ram model. This result is particularly important
in consideration of the fact that rock mass fracture observations for the “ Weibull Index ”
model were derived from the SPLIT image software, whereas the Kuz-Ram model relies

upon a rather subjective visual interpretation of the rock’s fractures.
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4.6.4 The Uniformity of Fragment Size Distributions

For the open-pit bench blasts studied for this work, the explosive is distributed
within the rock volume simply as a cylindrical column within a drill hole. Some preliminary
linear regression studies hinted that both cylinder diameter ( hole diameter) and the ratio
of bench height to explosive cylinder length ( powder column length ) were correlated to
the uniformity ( i.e. the consistency ) of fragment size. Uniformity also appeared to be
correlated to above grade explosive energy. Because above grade explosive energy can be
expressed as a function of hole diameter, further regression analysis work was centered

around a non-linear expression of the following form:

G H)C
n = CiBeg) +es|T (432)

where C; through Cj are constants, H is the bench height (m), and L is the length of the
powder column ( m ). A regression of the form represented by Equation 4.32 performed

on the site drill and blast data ( Table A1 Appendix ) resulted in:

ol 1258 020
n : i + LT = :
A 2830x107(E,q ) 117(L) (433)

a model which is anti-intuitive because at constant bench height H, fragment uniformity is
predicted to decrease as powder column length L increases. Exactly the opposite would
seem logical, i.e. that as explosive became more vertically distributed through the rock
mass over the bench height, the fragments would become more uniform in size. When the
shape parameter derived from the SPLIT system is regressed against that predicted by

Equation 4.33:
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Nspur = -0413(n ) +1.31 [R® = 0.838, Sig. F =0.000 ] (4.34)
The relationships between the scale parameters determined by the SPLIT system and
predicted by the Equation 4.33 model are presented on Figure 4.8, which shows that:

® The shape parameters for the sites predicted by the uniformity model ( Equation 4.33 )
range from 1.25 to 1.8, and the scale parameters derived from the SPLIT system range
from 1.2 to 2.0;

®m the total width of the 95% prediction band is about 0.4 units of shape parameter.

Conclusions: When Figure 4.8 is compared to Figure 4.4, it is evident that the Weibull

distribution fragment shape parameters predicted by the Equation 4.33 uniformity model

are much more accurate than those predicted by the Kuz-Ram model.
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Figure 4.8 - Comparison of Fragment Size Distribution Shape Parameters: SPLIT
Vs. Uniformity Model
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4.7  The Equivalence of the Kuznetsov Hardness Parameter
Attention is now re-directed back onto the form of Kuznetsov’s relationship for

mean fragment size ( Equation 4.6 ), repeated below as:

_ Yk

X = A (4.35)
M g.63

where

% = mean fragment size (cm);

A = rock mass “hardness” parameter;

Viu = rock mass volume (m’);

M. = equivalent mass of TNT applied to rock volume (kg).

It will be instructive to determine how well Kuznetsov’s relationship models the observed
data, without utilizing Cunningham’s expression for rock mass blastability ( Equation
4.10). Because X, Vm, and M. are known by observation, the average rock mass

hardness parameter “A” can be obtained via a non-linear regression as:

0.0
V.
A m (4.36)

(087 M)

0>
Il

where M represents the total ANFO mass ( kg ) used in the blasts, and 0.87 M

represents the equivalent mass of T.N.T. obtained by forming the ratio of explosive
weight strengths ( 0.87 = 100/115 ) for ANFO and T.N.T. Performing the Equation 4.36
regression results in an average “A” value of 1.973 for the 20 data sites, and a standard
deviation of 0.198. Assuming that the error associated with estimating “A” is normally

distributed, then approximately 95% of the “A” population values can be expected to lie
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within plus or minus two standard deviations of the mean value, or:

A-20 < A < A+2 = 158 < 1973 < 237 (4.37)

Then the total range of A values is only about 0.80, which is 15 times less than the 12 unit
total range proposed by Kuznetsov ( Table 4.2, Section 4.3 ). Figure 4.9 below shows the
graphical relationship between the mean fragment sizes as observed by the SPLIT system
at the different sites, and the modeled mean sizes obtained with the average hardness
parameter of 1.973 inserted into Equation 4.35 above. The equation of the “best fitting”

solid line shown on Figure 4.9 is:

Xspit = 0017Xgy, + 1158  [R*=0.00025, Sig. F=0947]  (4.38)
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Figure 4.9 - Comparison of Mean Fragment Sizes : SPLIT Vs. Kuznetsov Model
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Conclusions: Figure 4.9 indicates that the slope of the best fitting trend line is
approximately zero ( i.e. zero correlation ) and the width of the 95% confidence interval is
about 17 centimeters. The average fragment sizes observed by the SPLIT system and
those predicted by the Kuznetsov Equation are at high variance.

Before Kuznetsov’s Equation is put away, it will be instrumental to allow

Kuznetsov’s volume and explosive mass exponents to “float” in a regression such as:

(4.39)

for which the T.N.T. equivalent of explosive mass is now obtained for the above grade

ANFO within the drill hole. Performing the indicated regression results in:

V0.350

X = 1132 BT (4.40)
ag)’

(087 M

and the regression output results indicate that the standard deviation of A is 3.40 units.

The 95% confidence interval for A now becomes:

A-26 < A < A+2 = 452 < 1132 < 1813 (4.41)

the range of which totals 13.6, which now very closely matches the 12 unit range
proposed by Kuznetsov ( Table 4.2, Section 4.3 ). Figure 4.10 shows the relationship
between the mean fragment sizes as observed by the SPLIT system at the different sites,
and the modeled mean sizes predicted by Equation 4.40 above. The equation of the solid

trend line shown on Figure 4.10 is:

XSplit = 0972 iKuz + 0345 [R*=0.554, Sig. F=0.002 ] (4.42)
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Figure 4.10 - Comparison of Mean Fragment Sizes : SPLIT Vs. Kuznetsov Model

Conclusions: Comparing Figure 4.10 to Figure 4.9, it can readily be concluded that
Kuznetsov’s original rock mass volume and explosive mass exponents ( Equation 4.36 )
should change to the values represented within Equation 4.40, or else Kuznetsov’s
Equation is not applicable to the results of the SPLIT software.

This “ tweaking ” of Kuznetsov’s exponents has other important implications. One
important example is that Kuznetsov’s hardness parameter may now be derived as a
function involving the pre-blast rock mass cell imagery. Equation 4.28 for the fragment

screen size distribution scale parameter is here repeated:
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0.077 +,0.385 50.152 0152
4 ~ — S Vo Ops _ ~ ¢ 0472 Oy 143
f = : 50472 = w g0472 (4.43)
ag ag

and what may as well be called the “ Kuz-SPLIT ” Equation is represented by Equation

4.40, which is repeated below:

V0.350 V0.350
I _ rm m
X = A 2g 0474 1132 2910478 (4.44)
(087 m28) (087 m28)

Realizing that the scale parameter serves a purpose similar to the mean in that they are
both measures of central tendency, it is now proposed to determine an expression for the

mean fragment screen size ( cm ) with the following regression:

Vr(l)l.i}SO

_ c, =C
Xf C1S™ Xmi )0.474

(4.45)
(087 Mm2e

where the exponent values acting on rock mass volume and explosive mass are held
equivalent to those values observed in Equation 4.44, and X, now represents the
average rock mass chunk size (cm) derived from image analysis of the pre-blasted bench

face. Performing the indicated regression results in:

A 0350
x¢ = 05718008 z%B 7 (4.46)
(087Mm2¢)

The equation of the best fitting trend line between the mean fragment sizes observed with

the SPLIT system and those predicted by Equation 4.46 is:

Xspit =  0969%f + 0400 [R*=0.569, Sig. F = 0.0001 ] (4.47)
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which is virtually equivalent to Equation 4.42 above. Now Equations 4.44 and 4.46 can

be equated resulting in a formulation for the Kuznetsov rock mass “ hardness ” term:
A = 0snse LS (4.48)

which aside from rock mass strength, now also includes a SPLIT derived term for the

rock mass “ fissuring ” alluded to by Kuznetsov.

4.8 A Summary of Results for the Determination of the Rock Mass Specific
Energy Term

An accurate kne term is necessary to accurately perform explosive cost modeling.
The initial research activity for the determination of kn was concerned with regression
analysis performed around the form of Equation 1.2 from Chapter 1, here repeated as:
Bz = kg f(R) (4.49)
where E,. denotes the reductive energy expended by the explosive per ton of rock mass
(M]J/ ton ), R was the ratio of some characteristic dimensions representing the screen sizes
of the rock mass “chunks” and muckpile fragments, and k. relates the specific energy
(M]J/ ton ) consumed by the rock mass undergoing the form of size reduction represented
by the function “f ”. The results showed that the form of Equation 4.49 should probably

be altered to include a ratio of functions:

B = Ksie —(—7 (4.50)

where xm and x; are some characteristic rock mass chunk and fragment screen size,

respectively. Further regression analysis then culminated in Equation 4.29
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( Section 4.6.3 ) which was:

6%‘321

~ 0163 «,0815 | Onpe - f
Eqg — 130 S e e%_IIS — Kw e%—IIS (4.51)

where E,; was the estimated above grade energy ( MJ ); S was the rock strength ( MPa );

Ve was the rock mass volume (m’ ); 8., and 6; were the 63™ percentile values of

screen size for the rock mass and fragments, respectively (in ), and ﬁ&, was the estimated

metric “ Weibull Blast Index ” ( MJ- e ). The strength and volume terms within
Equation 4.51 were developed in metric units for purposes of realistic comparison with
the results of the Kuz-Ram metric model. But the cost equations of Chapter 2 assume
cubic yards as the fundamental unit of rock mass volume. The strength and volume terms

on the right hand side of Equation 4.51 above can be expressed in English units as:

0163 <0815 9 1321 ¢ 0321 " 0.321
- . A X m v m__ _ 5 m

where S and Vi, now assume units of 1bf/in” and yd® respectively. Then pursuant to the
development of Section 2.1 and Equation 4.50 above, the k. term ( MJ - in'” Jton ) can
be estimated as:

&P
Pb Vim

B (4.53)
where py is the bank density ( ton/yd3 ) of the rock mass volume Vi, ( yd3 ). Thus

formulated, the estimated kn. term of the above equation represents the resistance of the

rock mass to the explosive mode of size reduction, where the “size reduction” must be
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expressed as a ratio of functions acting upon the 63" percentile screen size values of the

pre-blast rock mass chunks and post-blast fragments.

4.9  Estimators for Fragment Screen Size Distribution Scale Parameters

The previous Chapter showed how shot-rock muckpiles can be characterized by
a 2 parameter Weibull distribution. In the next Chapter, machine production will be
developed as a function of such a distribution. In Section 4.6.5 of the current Chapter, an
estimator for the distribution shape parameter was presented. Therefore to completely
characterize the fragment size distribution, an estimator for the distribution scale
parameter is necessary. This can be accomplished by simply back-solving Equation 4.52

above for fragment scale parameter resulting in an estimator of :

0.152 0.152
_ 0.077 +,0.385 m - ——m
s = 205 S v 0472 = (KW ) 0472 (4.54)
ag ag

But the above expression can be transformed into a basic “ Kuznetsov ” form by re-

arranging terms:

) oorrorsy VO3S /0385
I i m m
O = 205 S ;b 0473 = ABW (4.55)
Eag Eag

where the subscript on the rock mass constant Ap denotes that the rock mass chunk
screen size scale parameter was utilized to determine the hardness parameter. The two

equations above have different interpretations:

~fE 5 ’ : ' ;
1. The K, term in Equation 4.54 is theorized as constant over certain ranges of S and
Vem ;
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2. the Apterm of Equation 4.55 is theorized as constant over certain ranges of S and
Om ;

3. Sand O, are functions of Vi ;

4. thus O is related to Vi explicitly by Equation 4.55 and implicitly by Equation 4.54.

4.10 The Estimated Cost of the Explosive Mode of Size Reduction
In Section 2.1, Equation 2.1 was developed to express the dollar per ton cost of

blasting rock mass as:

Ce = [(ae +be)(kme—f(R)j (4.56)

€m
where a. + b. were the costs of owning and operating the powder loading equipment
($/1b ), kme was the specific energy ( MJ/ton ) consumed by the rock mass undergoing the
functional form ( f ) of dimensionless size reduction (R ), and e, was the mass specific
energy of the explosive ( MJ/lb ). The results of the previous Section demonstrated that
C. will have to be estimated as:
u ; 913 21\ T

e )
f

€m

(ac +be) (4.57)

@k
o
I

L -

where k me ( Equation 4.53 ) has units of MJ - in'” /ton, and 8. and ©6; were the 63"

percentile values of the Weibull screen size distributions representing the rock mass and
fragments respectively. The next Chapter is primarily concerned with estimating the cost

of loading machines, and the work presented in Chapter 6 estimates the cost of the
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drilling machine. The cost of the explosive mode of size reduction will be discussed yet

again in the total excavation cost model developed in Chapter 7.
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S PRODUCTION AND COST ESTIMATORS FOR LOADING MACHINES

“ There are several kinds of shovels as regards quality, shapes and
lengths of handle, and shape of blade. Handles are long or short and the
end may be pointed or square. The blade may be round, half round, or
square, and the shape of the blade may vary from flat to that of a scoop.
The material to be handled, the place in which the shovel is to be used,
the kind of work, etc., will govern the choice. ”

Wilson, Cunningham, and Butler ( 1934 ) -~~~ Arizona Lode Gold Mines and Gold
Mining
The goal of this chapter is the derivation of production and cost estimators for
shot-rock loading machines. One dependent variable for the estimators is taken as the
100th percentile value of the fragment screen size distribution. The following list

summarizes the work:

[y

. Machine production is derived as a function of perfect cycle time and shear cycle time
( Section 5.1 );

2. total machine cycle time trends are considered at different ranges of screen size
( Section 5.2 );

3. estimators for total machine production are derived ( Section 5.3 );

4. the effect of shear cycle time upon estimated total machine production is investigated
( Section 5.4 );

5. the machine cost estimator is developed ( Section 5.5 ).

5.1 Machine Production and Total Cycle Time

In Section 3.4.3, production ( tons/hr ) was defined on a per truck basis as:

B (3600 pn Vi Ft) _ (3600cmk j
" t truck t truck

(5.1)
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where py, is the heaped muckpile density ( ton/yd’ ), V, is the volume of the truck bed
( yd3 ), F. is the truck fill factor ( dimensionless ), Cycx is rated capacity ( tons ) of the
truck, and ty.ck is the truck load time ( s ) observed from the video imagery. Average

machine production for a site is then defined as:
By = < ElBs) (5.2)

where n is the total number of trucks filled by the machine. Average machine production

was also defined in Section 3.4.3 as:

- PuVp F

p, = Lol (5.3)
ttot

where Vi, is the struck bucket volume (yd’ ), and Py, tyy and F are the hourly average

values for the heaped muckpile density ( tons/yd’ ), total machine cycle time ( hr ), and

bucket fill factor. V}, and t,y are known from observation, but because p, and Fare

unknown, their product is treated as a constant:

_ eV
P, = Cr-t

o (5.4)
Lot

and the values of Eg (tons/yd’) at the various machine loading sites are obtained by

regression. The total average machine cycle time term of Equation 5.3 above was defined

( Section 2.2 ) to be:

; ~Km
- sf =Wy - .

+ I (5.5)

where Em (in - hrs ) is the average machine constant, W, (in ) is bucket width, s¢ (in)
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is fragment screen size (in ), fp (hr ) is the “ perfect ” cycle time, and tgis the “ shear ”

cycle time (hr), or the time expended in shearing or ploughing fragments with the

bucket. The function represented by Equation 5.5 was defined only over the size interval

0 < s¢< W, Perfect cycle time is defined at s; =0, or tyy = =t,. Aboves; =0,

p-

c_g |Ewl

shear cycle time adds to perfect cycle time until sy = Wy, and t o — 0.

5.2 Total Cycle Time and Fragment Screen Size Considerations

Loading machine performance was assessed at the 100" percentile values of the
fragment screen size distributions. For instance if the 100" percentile screen size value at
a site is 20 inches, then there exists a 100 percent probability that the screen sizes of all of
the fragments are less than or equal to 20 inches. Then as long as the loading machine
bucket width is greater than 20 inches, all of the fragments can be loaded with 100 percent
certainty. If the bucket width is less than 20 inches, then the total machine cycle time is
undefined for fragments beyond 20 inches of screen size ( Equation 5.5 above ), and
certain fragments contained within the distribution are never loaded.

The cumulative form of the Weibull distribution was presented in Section 3.7.2 as:

Fx) = 1 - exp[—(%) } (5.6)

where F(x) is the probability (0 < P < 1) that the variate takes a value less than or equal

to x, and O and n are the scale and shape parameters of the distribution, respectively.
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The distribution parameters for the fragment screen sizes at a loading site are estimated as
discussed in Section 3.7.2; and thus the screen size (x) associated with any percentile

value can be determined with Equation 5.6. However, at the 100" percentile value,

F(x) = 1.0 in Equation 5.6, and:

exp{—(%)n} =0 (5.7)

for which x =0 for both 0 and n > 0. For the machine production modeling, this problem
was overcome simply by approximating the 100" percentile value as F(x) = 0.999. Then

the screen size approximating the 100" percentile can be obtained by back-solving for x

as:

n

Y 0 (6.90)1/2 (5.8)

Now taking s¢= x}OO

, and because t , and W, are also known from observation, kn
values for the various machines can be determined via regression analysis.

Figure 5.1 shows some results for the large ( 11.7 yd® ) front end loader
population. The average total machine cycle time is expressed in minutes. The observed
100th percentile values (M) of fragment screen size range from 5 to 85 inches. A solid
trend line has been fit over the range of the observed data, and a dashed line represents the
trend of the average modeled total cycle time curve ( obtained with Equation 5.5 above )
within the range of observed data. The modeled time curve exhibits much more sensitivity

( greater slope) than does the observed data trend line. The difference in sensitivity

between the two trends is perhaps best explained by expanding the screen size range out



127

towards the W, term ( bucket width ) of Equation 5.5. Figure 5.2 shows the results of

such a total cycle time extrapolation for the large front end loaders; i.e. the probable

machine behavior if production at sites with larger 100" percentile sizes could have been

sampled.

Average total cycle time (min)

1.00 —

0.80 —

0.40

~] portion of modeled time trend curve ,

| ’

in) = - in) - ,
ttot (min) 102/ (100th Prentl (in) 187)X,

0

| I | I | l I | | l I I | I I l | I I I
10 20 30 40 50 60 70 80 90 100
100th percentile of fragment screen size distribution (in)

Figure 5.1 - The Observed and Modeled Average Total Cycle Times for Large

Front End Loaders Over the Range of the Observed Data

On Figure 5.2, both the non-linear modeled time trend and the best fitting trend line ( both

on the observed data ) have been projected out towards the bucket width ( W, ) of the

loaders. Beyond a screen size of about 40 inches, the modeled trend rapidly diverges

above and away from the projection of the observed trend. As 100" percentile fragment

size approaches the bucket width term W,, ( which is 187 inches for these large front end

loaders ) the total cycle time approaches infinity, and the production will approach zero
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( Equation 5.4 ) simply because certain fragments will never be loaded into the bucket.
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Figure 5.2 - The Observed and Modeled Average Total Cycle Times for Large
Front End Loaders Extended Out Towards the Bucket Width
5.3 Machine Production Estimators
If Equation 5.5 above is substituted into Equation 5.4, then an expression for

average machine production (tons/hr) as a function of fragment screen size results:

Vp (s = Wp) (5.9)

o>
EI
Il

where the “bar” symbols (— ) atop the variates indicate averages, and the “ hat ”

symbols ( A ) indicate estimators. “Perfect production” is defined at s¢= 0:
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CF
= 0]

mp
m
To facilitate the analysis, machines of the same type were classified into different ranks

72)
]

according to bucket volume range. Then 5.10 above becomes:

éF
p _— —
mp = = | Vb W (5.11)
km

|>

b
|

The estimated standard deviation of the average production was assessed with the

uncertainty analysis technique presented in Section 3.9:

" = 9 x 2 A 27172
B o o o
P | el 5 L. ¥ S s ... JF

—G
mp ac‘f ttf ok

The estimated coefficient of variation for the average estimated perfect machine

o~

production ( tons/hr ) is:
oinp
(5.13)

-2>
=l
|

Pmp

mp
Table 5.1 presents some results of the machine regression analysis. The numbers in

square brackets are the standard deviations of the values directly above them. The

average perfect cycle time terms for the machines were estimated as:

(5.14)

c§||EWI>

and converted to minutes to facilitate entry into the table. The standard errors of the

perfect cycle time terms were assessed in a manner similar to that used for Equation 5.11

above.
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Table 5.1 - Perfect Machine Production for Different Types and Classes of Loading

Machines
LR 3 v, W 2 ?: £ ?;
Machine Cp M km. Strubck Bclt:t 'p b Pmp Poop
Class | (tons [Machine Bekt. |Width Perfect | Perfect| Perfect | Pefect
aisil per | Cnstnt. Vcol. (i]n) Cycle | Cycle | Prod. | Prod.
Type yd*) (m-hrs)( d;) Time | Time |( tons perl COV
y (min) | cOV | hr)
large front | 1.660 | 1.700 11.7 | 187 | 0.545 2136
end loaders [[0.052]"| [0.092] [0] [0] | [0.029] | 0.054 | [67] 0.031
(11.7 yd*)
extra-large | 1.530 | 2.477 213 | 222 | 0.669 2920
frontend |[[0.054]| [0.163] [0] [0] | [0.044] | 0.065 | [103] 0.035
loaders
(213 yd®)
medium | 1.673 | 0.809 | 20.6 | 108 | 0.449 4600
cable [0.053]] [0.044] | [1.58]| [0] | [0.024] | 0.054 | [382] 0.083
shovels
(19t022
yd*)
large cable | 1.280 [ 0.921 37.8 | 156 | 0.354 8195
shovels |[[0.131]| [0.044] | [3.50]|[16.42] [0.073] | 0.208 | [1423] | 0.174
(34 to 4l
yd*)
extra-large | 1.430 1.54 56 192 | 0.481 9984
cable [0.027]| [0.017] [0] [0] | [0.005] | 0.011 | [188] 0.019
shovels
(56 yd*)
medium | 1.206 | 1.002 21 |151.5| 0.396 3829
hydraulic |[0.065]| [0.058] | [2.03]([16.20]| [0.048] | 0.021 | [589] 0.154
shovels
(181t023.5
yd*)
large 1205 | 0905 | 25.8 | 134 | 0405 4603
hydraulic |[0.063]| [0.077] | [1.09] [[28.56] [0.092] | 0.229 | [1028] | 0.224
shovels
(25t027
yd')

Note 1: Numbers in square brackets are standard deviations.
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The principal results of Table 5.1 will be interpreted comparatively on bar charts.
Figure 5.3 presents the estimated perfect cycle averages for the six different ranks of
loading machines, and Figure 5.4 presents the perfect productions. Referring first to
Figure 5.3:
B Large and extra large front end loaders ( LFEL and XLFEL, respectively ) exhi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>