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INTRODUCTION 
 
The Sentinel Plains lava field and associated small shields are early Pleistocene-age, mantle-derived alkali 
olivine basaltic lavas in the vicinity of the Gila Bend and Painted Rock Mountains, 65 km to 100 km 
southwest of Phoenix, Arizona (please see 1:100,000-scale map). These volcanic centers are collectively 
referred to as the Sentinel-Arlington Volcanic Field (SAVF).  The SAVF covers ~600 km2 and consists of 
more than 2 dozen volcanic centers ranging from 4-6 km in diameter and 30-200 m in height.  The lavas 
are partially eroded and dissected by peripheral ephemeral washes, the Hassayampa River, and the Gila 
River, as well as lightly mantled by aeolian dust, pedogenic calcium carbonate, and basaltic rubble, with a 
few areas covered by alluvium. 
 
PREVIOUS INVESTIGATIONS 
 
The Sentinel-Arlington Volcanic Field has been mapped at 1:1,000,000 scale on the geologic map of 
Arizona (Richard et al., 2000; Reynolds, 1988); 1:375,000 scale on Maricopa and Yuma county maps 
(Wilson et al., 1960; Wilson et al., 1957); and 1:100,000 scale on 30' by 60' quadrangle geologic and 
surficial maps (Spencer, 1995; Reynolds and Scotnicki, 1993; Demsey, 1989, 1990). Several peripheral 
low shields were partially mapped at 1:50,000 to 1:24,000 scale (Scotnicki 1993a, 1993b, 1994; Peterson 
et al., 1989).  The Sentinel Plains and the Warford Ranch, Woolsey, Gillespie, and Arlington small shields 
were dated as Pliocene to early Pleistocene by K-Ar methods in the late 1970's (Reynolds et al., 1986; 
Shafiquallah et al., 1980; Schoustra et al., 1976; Spencer, 2013), though the data often exhibit a range of 
2-3 Ma for the same lava flow or a single edifice assumed to be monogenetic due to lack of intercalated 
paleosols or weathering horizons between units (Cave, 2004; Cave and Greeley, 2004; Cave et al., 2007; 
Greeley and Cave, 2007). The Sentinel Plains and the associated low shields were mentioned briefly in 
descriptions of Arizona Cenozoic tectonism and/or volcanism (Lynch, 1989; Reynolds et al., 1986; 
Morrison, 1985; Damon et al., 1984; Lee and Bell, 1975). 
 
GEOLOGIC SETTING 
 
The SAVF lies on the eastern terminus of the Gila River trough (Eberly and Stanley, 1978). Northwest-
trending normal faults cut the surrounding terrain (Richard et al., 2000; Skotnicki, 1993a, 1993b, 1994; 
Reynolds and Scotnicki, 1993; Reynolds, 1988; Scarborough et al., 1986).  SAVF potentially represents 
basaltic plains-style volcanism (Greeley, 1977, 1982), an emplacement style of volcanism intermediate 
between classic flood volcanism and large shield-building volcanism (Fig. 1). The SAVF basal contact 
rests on mid-Tertiary volcanic deposits in the Painted Rock and Gila Bend Mountains, alluvium, 
alluvial/colluvial pediment deposits, or on a QTg gravel terrace in lower elevations.  The latter is typically 
a conglomerate of rounded polymictic gravels and cobbles, with laminar interstitial calcrete cementing 
and partially brecciating the clasts (similar to Stage IV calcrete morphologic development of Machette, 
1985; Bachman and Machette, 1977; after Gile et al., 1966). The basal contact is up to ~30 m above the 
modern Gila River channel. K-Ar and 40Ar/39Ar dating indicate the field is ~1-3 Ma in age (Table 1; 
Spencer, 2013; Cave et al., 2007). 
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Figure 1: Plains-style volcanism 

 
 
A. Vertically exaggerated schematic cross-section of major features of basaltic “plains” style volcanism, 
as characterized by Greeley (1982) in Eastern Snake River Plain, Idaho.  The majority of the lava flows is 
typically pahoehoe and seldom exceed ~10 m in thickness except where ponded in topographic lows.  The 
Sentinel-Arlington Volcanic Field exhibits the same style of volcanism, but over a smaller area and 
cumulative thickness, and the flows have been subsequently weathered, incised, and mantled by aeolian 
fines and discontinuous alluvium.   

 
B. Block diagram showing typical development of terrain in basaltic “plains” style volcanism as 
characterized by Greeley (1982) in the eastern Snake River Plain, Idaho. 
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EXTRUSIVE AND HYPABYSSAL IGNEOUS ROCKS 
 
Summit region lava flows and tephra deposits 
 
Description: Summit regions are defined by a distinct surface texture in the aerial photographs that 
corresponds to a steeper surface gradient (typically >6°); conical and radial, 0.5 m to 1.5 m thick, 
subvertical dikes, often exposed at up to 2-3 m positive relief; relatively short, thin lava flows 0.5 to 2 m 
thick; and limited exposures of oxidized spatter or tephra. Summit regions typical have 1 to 2 mm 
phenocrysts of needle-like, translucent plagioclase feldspar.  
Interpretation: Possible extent of pyroclastic deposits and shelly pahoehoe lava flows that have been 
weathered, often revealing the vent-area feeder dikes. 
 
Midflank lava flows 
 
Description: The midflank stratigraphic units are composed of  lava flows with moderate surface angles 
and occasional relict flow festooning at 25 m to 75 m spacing that is visible in aerial photographs. There 
are rare skylights formed from collapse of partially drained lava tubes.   
Interpretation: The midflank units are interpreted to be an accumulation of edifice-building lava flows.  
The majority of these flows are interpreted to be typically pahoehoe flows, with some a'a flows 
(sometimes with transverse flow buckling) where flows encountered steep paleoslopes or pre-existing 
topographic barriers during emplacement that caused the flows to at least locally have evidence of higher 
internal shear. 
 
Distal lava flows 
 
Description: The lowest stratigraphic units are broad, flat (>2° grade) lava flows forming the base of the 
shields. In the very flat topographic saddles between shields there are typically 5 to 8 m high hills and 
ridges as well as circular high-albedo features ~20 m in diameter. The distal units are usually 3 to 8 m 
thick, with a 0.5 m frothy vesicular capping layer underlain by a massive interior with dispersed vesicles, 
vesicle pipes, and discontinuous basal breccias. Where the distal units are ponded in pre-existing 
topographic lows they can be 10-12 m thick and form 0.5 to 1 m diameter columnar jointing, with rare 
basal palagonitic rinds and sub-meter pillow lavas. Cross-sectional exposures of distal units also reveal 
rare 1 to 2 m diameter lava tubes (typically completely filled with cooled lava).  
Interpretation: The distal units are interpreted to be degassed pahoehoe lava flows fed by a system of 
lava-tube conduits. This unit can develop inflationary features such as tumuli, pressure ridges, and 
collapse pits when crossing very flat regions. Along the margins of the field where these flows are 
deposited onto alluvium and not subsequently capped by later lava flows, they often typically exhibit 
reverse topography.  In areas where the original flows form long thin fingers of lava, with a high length-
to-width ratio in plan view (indicating that it may have followed a pre-existing surface drainage and a 
topographic low) it now typically creates a ridgeline as the surrounding base level drops and the less-
resistant alluvium weathers away or deflates, leaving the lava flow as a more-resistant topographic high. 
 
Kipukas 
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Description: Completely embayed basaltic islands with textures, phenocryst assemblages, etc., that do 
not match the embaying lava flow.  
Interpretation: Underlying basaltic units that can represent a pre-existing SAVF volcanic unit or an older 
Miocene to Pliocene-age basaltic remnant.  
 
Late Tertiary basaltic rocks and cinder deposits 
 
Description: Dark-gray, fine-grained basaltic lava flows and rare welded agglutinate and tephra deposits 
that have not been tectonically altered (unlike the faulted Miocene basaltic units of the Painted Rock 
Mountains). Typically exhibits vesicular flow exteriors and massive or vuggy interiors, typically 
porphyritic with varying phenocryst assemblages, rarely exhibits diktytaxitic texture. 
Interpretation:  Very dissected Pliocene-age (?) cinder cones and lava flows. 
 
SEDIMENTARY UNITS 
 
Mantling fines 
 
Description: Silt and clay, sometimes indurated by pedogenic calcium carbonate. 
Interpretation: Aeolian fines and locally derived clays, sometimes asymmetrically accumulated on 
edifice related to dominant wind patterns, with varying stages of pedogenic calcium carbonate 
accumulation.  Often an active component of desert pavement, and clay swelling may slowly loft surface 
basalt rubble as mantle accumulates (Anderson et al., 2002; Wells et al., 1985, Gile et al., 1966). 
 
Surficial deposits 
 
Description: Subangular heterolithic gravel to sand-sized alluvium on SAVF basaltic units. 
Interpretation: Pleistocene-Holocene alluvial cover, some active and some stranded on SAVF basaltic 
units from washes and flood stages of the Hassayampa and Gila Rivers. 
 
Gila River gravels 
 
Description: Rounded heterolithic gravel and cobble-sized river gravels and polymictic conglomerates 
cemented by laminar interstitial calcrete at base of the SAVF or forming heavily-varnished lag terraces 
~15 to 30 m above current river channel bottom. 
Interpretation:  Paleo-channel terraces of the Gila River. 
 
STRUCTURE 
 
SAVF lava flows exhibit no obvious tectonic post-emplacement offset, though there are strong NW-
trending erosional re-entrants that correspond to mapped faults in nearby terrain.  Also SAVF vent 
locations sometimes exhibit NE or NW alignment, especially in the Oatman and Painted Rock Mountains 
pediment areas.  This alignment could potentially represent the influence of pre-existing structures 
crossing the underlying bedrock, similar to structural control of vent alignments observed in other basaltic 
fields in Arizona (Conway et al., 1997; Crumpler et al., 1994; Connor et al., 1992). 
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UNIT DESCRIPTIONS 
 
Qo Surficial deposits - Pleistocene-Holocene alluvial cover overlying Sentinel-Arlington Volcanic Field units

Qba Tephra deposits - Remnant basaltic ash, lapilli and cinder as intercalated lenses or remnant phreato-
magmatic cones and cinder cones. 

QBSNs Sentinel Peak low shield secondary vent summit - Basaltic pahoehoe flows and near-vent pyroclastic 
deposits and intercalated tephra deposits with 6º-22º slope angle of the secondary Sentinel Peak vent +/-
radial and concentric feeder dikes

QbSSs Sentinel Peak low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and 
intercalated tephra deposits with 6º-22º slope angle of the Sentinel Peak vent +/- radial and concentric feeder 
dikes 

QbSSm Sentinel Peak low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Sentinel Peak vent

QbSSd Sentinel Peak low shield distal - Basaltic pahoehoe flows of the Sentinel Peak vent with <0-2º slope angle 
and alluvial cover 

QbMLs Malpais low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle +/- radial and concentric feeder dikes of the Malpais vent 

QbMLm Malpais low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Malpais vent, 40Ar/39Ar 
radiogenic age of 1.08 ± 0.15 Ma 

QbMld Malpais low shield distal - Basaltic pahoehoe flows of the Malpais vent with <0-2º slope angle

QbSEd Sent 774 low shield distal - Basaltic pahoehoe flows with ~0º-5º slope of the Sent 774 vent, possible fissure-
style eruption, very low aspect ratio, lacking typical low shield edifice 

QbMEs Midway low shield secondary summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and 
intercalated tephra deposits with 6º-22º slope angle of the secondary Midway vent +/- radial and concentric 
feeder dikes 

QbMWs Midway low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Midway vent +/- radial and concentric feeder dikes 

QbMWm Midway low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope angle of the Midway vent

QbMWd Midway low shield distal - Basaltic pahoehoe flows of the Midway vent with <0-2º slope angle and possible 
alluvial cover 

QbSTs Stanwix low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Stanwix vent +/- radial and concentric feeder dikes 

QbSTm Stanwix low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Stanwix vent

QbSTd Stanwix low shield distal - Basaltic pahoehoe flows of the Stanwix vent with <0-2º slope angle

QbCTs Control Tower low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and 
intercalated tephra deposits with 6º-22º slope angle of the Control Tower vent +/- radial and concentric feeder 
dikes   

QbCTm Control Tower low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Control Tower vent

QbCTd Control Tower low shield distal - Basaltic pahoehoe flows of the Control Tower vent with <0-2º slope angle 
and alluvial cover 

QbWSs Wild Horse low shield secondary summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and 
intercalated tephra deposits with 6º-22º slope angle of the southeastern Wild Horse vent +/- radial and 
concentric feeder dikes 

QbWNs Wild Horse low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the northwestern Wild Horse vent +/- radial and concentric feeder 
dikes, one dike 40Ar/39Ar radiogenically dated as 1.25 ± 0.024   Ma

QbWNm Wild Horse low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Wild Horse vent

QbWNd 
 

Wild Horse low shield distal - Basaltic pahoehoe flows of the Wild Horse vent with <0-2º slope angle and 
alluvial cover 
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QbTMs 
 

Ten Mile low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Ten Mile vent +/- radial and concentric feeder dikes +-
underlying tuff ring 

QbTMm Ten Mile low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Ten Mile vent

QbTMd Ten Mile low shield distal - Basaltic pahoehoe flows of the Ten Mile vent with <0-2º slope angle and 
alluvial cover 

QbTHs 
 

Theba low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Theba vent +/- radial and concentric feeder dikes 

QbTHm Theba low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Theba vent

QbTHd 
 

Theba low shield distal - Basaltic pahoehoe flows of the Theba vent with <0-2º slope angle and alluvial 
cover, 40Ar/39Ar radiogenically dated at 1.71 ± 0.054 Ma 

QbTRs 
 

Tartron low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Tartron vent +/- radial and concentric feeder dikes 

QbTRm Tartron low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Tartron vent

QbTRd Tartron low shield distal - Basaltic pahoehoe flows of the Tartron vent with <0-2º slope angle and alluvial 
cover   

QbWTs 
 

White Hills low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the White Hills vent +/- radial and concentric feeder dikes 

QbWTm White Hills low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the White Hills vent

QbBGs 
 

Black Gap low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Black Gap vent +/- radial and concentric feeder dikes 

QbBGm Black Gap low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Black Gap vent

QbSCm 
 

Sauceda tuff ring lava pond/flows - Late-stage basaltic lava flows and remnant lava pond partially covering 
or infilling the phreatomagmatic Sauceda tuff ring (most of the tuff deposit(s) subsequently weathered away)

QbWRs 
 

Warford Ranch low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and 
intercalated tephra deposits with 6º-22º slope angle of the Warford Ranch vent +/- radial and concentric 
feeder dikes 

QbWRm Warford Ranch low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Warford Ranch 
vent 

QbWRd 
 

Warford Ranch low shield distal - Eroded and undercut  basaltic pahoehoe flows of the Warford Ranch vent 
with <0-2º slope angle and possible alluvial cover 

QbGLs 
 

Gillespie low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Gillespie vent +/- radial and concentric feeder dikes 

QbGLm 
 

Gillespie low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope angle +/- possible festooned a'a 
flows around granitoid kipuka, of the Gillespie vent, the latter evidenced by partially concealed ~25 m to 75 
m wavelength transverse flow buckling

QbGLd Gillespie low shield distal - Basaltic pahoehoe flows of the Gillespie vent with <0-2º slope angle and 
alluvial cover 

QbOVs 
 

Overlook low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Overlook vent +/- radial and concentric feeder dikes 

QbOVm Overlook low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Overlook vent

QbWLs 
 

Woolsey low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the Woolsey vent +/- radial and concentric feeder dikes 

QbWLm 
 

Woolsey low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope +/- possible a'a flows as 
evidenced by remnant ~10-50 m wavelength transverse buckling of the Woolsey vent 

QbWLd 
 

Woolsey low shield distal - Basaltic pahoehoe flows of the Wild Horse vent with <0-2º slope angle and 
possible alluvial cover 
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QbRTs 
 

RadioTower low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and 
intercalated tephra deposits with 6º-22º slope angle of the Radio Tower vent +/- radial and concentric feeder 
dikes 

QbRTm RadioTower low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope of the Radio Tower vent

QBPSs 
 

Painted Rock low shield secondary vent summit - Basaltic pahoehoe flows and near-vent pyroclastic 
deposits and intercalated tephra deposits with 6º-22º slope angle of the southern Painted Rock vent +/- radial 
and concentric feeder dikes 

QbPNs 
 

Painted Rock low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and 
intercalated tephra deposits with 6º-22º slope angle of the northern Painted Rock vent +/- radial and 
concentric feeder dikes, 40Ar/39Ar radiogenically dated at 1.91 ± 0.59 Ma 

QbPNm 
 

Painted Rock low shield vent midflank - Basaltic pahoehoe flows with ~2º-5º slope angle of the northern 
Painted Rock vent 

QbPNd 
 

Painted Rock low shield distal - Basaltic pahoehoe flows of the Painted Rock vent with <0-2º slope angle 
and alluvial cover 

QbONs 
 

Oatman low shield secondary vent summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits 
and intercalated tephra deposits with 6º-22º slope angle of the northern Oatman vent +/- radial and concentric 
feeder dikes 

QbOSs 
 

Oatman low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits with 6º-22º slope angle of the southern Oatman vent +/- radial and concentric feeder dikes 

QbOSm Oatman low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope angle of the southern Oatman vent

QbOTd Oatman low shield distal - Basaltic pahoehoe flows of the Oatman vent with <0-2º slope angle and alluvial 
cover 

QbALd 
 

Arlington low shield distal - Basaltic pahoehoe flows of the Arlington vent with <0-2º slope angle and 
stranded alluvial cover on northern and southern flanks 

QbALm 
 

Arlington low shield midflank - Basaltic pahoehoe flows with ~2º-5º slope angle +/- possible festooned a'a 
flows of the Arlington vent, the latter evidenced by partially concealed ~25 m to 75 m wavelength transverse 
flow buckling 

QbALs 
 

Arlington low shield summit - Basaltic pahoehoe flows and near-vent pyroclastic deposits and intercalated 
tephra deposits of the Arlington vent with 6º-22º slope angle +/- radial and concentric feeder dikes, 
radiogenically dated as 2.37 +- 0.03 Ma

QTg Gila River Gravels - Plio-Pleistocene Gila River deposits/terraces ~30 m above current river profile

Tb 
 

Tertiary basaltic units - Basaltic to basaltic andesite flows and pyroclastic deposits, often tectonically 
rotated and/or embayed by SAVF units 
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