Distribution and general regional tectonic setting of Cordilleran Metamorphic Core Complexes (solid black).

CONTRIBUTED REPORT CR-20-A
March 2020
Arizona Geological Survey
azgs.arizona.edu | repository.azgs.az.gov
This contributed report represents a re-release of a major study of the uranium favorability of Cordilleran metamorphic core complexes. It was funded by the US Department of Energy (DOE) through a subcontractor (Bendix) to Principal Investigators Peter J. Coney and Stephen J. Reynolds, then at the University of Arizona. The report was released in 1980 as DOE report GJBX-258 (80). The availability of DOE reports generated during this time period is variable, so the Arizona Geologic Survey graciously provided the opportunity to include this report in its Contributed Report series. I scanned the original paper version of the report, not an easy task since in those days we taped and pasted photos and other figures directly onto sheets of paper, making use of a sheet-fed scanner a bit of a challenge. But all the pages were eventually scanned successfully.

The impetus for this study was the discovery of the Rossing uranium deposit in Namibia. The Rossing deposit is hosted in a gneissic terrain, interpreted to be part of a gneiss dome. Cordilleran metamorphic core complexes are also partly composed of gneissic rocks and have a domal configuration, so US DOE wanted to assess whether core complexes were favorable for Rossing-type deposits (the answer is not much). As part of the study, tectonic maps were compiled of every major core complex in the western US (the Arizona Geological Survey has a printed copy of each map), and a short synopsis was written for each complex. In addition, I conducted field studies in every core complex, focusing on the uranium and thorium contents, as well as other geochemical aspects, of rocks within the crystalline core. I carried and deployed a large scintillometer and collected samples for later geochemical analysis. The results of these geochemical studies, including all data tables, are contained in their entirety within the report.

The report contains a wealth of geologic and geochemical information about Arizona and other parts of the western United States. Some of the components of this report represent compilation from the geologic literature, but other parts contain important original research, some of which remains unpublished until now. For example, this report contains an important contribution about the geochemistry of granitic rocks in core complexes and contains the first description of the Priest River (Selkirk) metamorphic core complex.

The report is the result of many people besides me, including Peter Coney, George Davis, and Stanley Keith. Individual chapters and sections are individually authored and can be cited as such. Thanks to Michael Conway and Phil Pearthree of the Arizona Geological Survey for helping this report and the contained data become more visible.

S. Reynolds, 2020
CORDILLERAN METAMORPHIC CORE COMPLEXES
AND THEIR URANIUM FAVORABILITY

FINAL REPORT

Peter J. Coney and Stephen J. Reynolds

with contributions by

George H. Davis, Stanley B. Keith, Paula F. Trever,
Steven H. Lingrey, Charles F. Kluth, Diane C. Ferris,
James F. Dubois, and James J. Hardy

LABORATORY OF GEOTECTONICS
DEPARTMENT OF GEOSCIENCES, UNIVERSITY OF ARIZONA
Tucson, Arizona 85721

with the cooperation of
ARIZONA BUREAU OF GEOLOGY AND MINERAL TECHNOLOGY
845 N. Park Ave.
Tucson, Arizona 85719

November, 1980

PREPARED FOR THE U.S. DEPARTMENT OF ENERGY
ASSISTANT SECRETARY FOR RESOURCE APPLICATIONS
GRAND JUNCTION OFFICE, COLORADO
UNDER CONTRACT NO. DE-AC13-76GJ01664
AND BENDIX FIELD ENGINEERING CORPORATION
SUBCONTRACT NO. 79-357
TABLE OF CONTENTS

LIST OF FIGURES .. 7
LIST OF MAPS ... 13
LIST OF TABLES .. 15
SUMMARY by Peter J. Coney and Stephen J. Reynolds 17
ACKNOWLEDGMENTS 19
INTRODUCTION by Peter J. Coney and Stephen J. Reynolds ... 21
CHAPTER 1 -- CORDILLERAN METAMORPHIC CORE COMPLEXES: AN OVERVIEW by Peter J. Coney 25
 Introduction ... 25
 Characteristics 29
 Regional Tectonic Setting 39
 Tectonic Significance 54
CHAPTER 2 -- MANTLED GNEISS DOMES by Paula F. Trever 65
PART I: A REVIEW OF THE LITERATURE 65
 Introduction .. 65
 The Mantled Gneiss Dome of Eskola (1949) 66
 Mechanisms ... 67
 Survey of Regional Literature 72
 Concluding Remarks 83
Part II: DESCRIPTIONS OF INDIVIDUAL AREAS 84
 North America .. 85
 Greenland .. 87
 South America .. 89
 Eurasia ... 89
 Africa .. 95
 Australia ... 98
 Antartica ... 99
PART III: TABULAR SUMMARY OF MANTLED GNEISS DOMES OF THE WORLD 100
PART IV: GEOLOGIC CROSS-SECTIONS OF MANTLED GNEISS DOMES AND CORDILLERAN METAMORPHIC CORE COMPLEXES 110
CHAPTER 3 -- METAMORPHIC CORE COMPLEXES -- STRUCTURAL CHARACTERISTICS, KINEMATIC EXPRESSION, AND RELATION TO MID-MIOCENE LISTRIC FAULTING by George H. Davis

Structural Characteristics
Kinematic Expression

MID-MIOCENE LISTRIC NORMAL FAULTING by George H. Davis and James J. Hardy, Jr.

Introduction
Miocene Listric Faulting and Metamorphic Core Complexes
Dynamic Interpretations

CHAPTER 4 -- A CONCEPTUAL BASIS FOR THE OCCURRENCE OF URANIUM IN CORDILLERAN METAMORPHIC CORE COMPLEXES by Stephen J. Reynolds

Introduction
A Conceptual Basis for the Occurrence of Uranium Related to Plutonic Processes
A Conceptual Basis for the Occurrence of Uranium Related to Metamorphic Processes
A Conceptual Basis for the Occurrence of Uranium Related to Mylonitic Processes
A Conceptual Basis for the Occurrence of Uranium Related to Dislocation Surfaces
A Conceptual Basis for the Occurrence of Uranium Related to Processes Extrinsic to Cordilleran Metamorphic Core Complexes

CHAPTER 5 -- GEOCHEMISTRY OF CORDILLERAN METAMORPHIC CORE COMPLEXES by Stanley B. Keith and Stephen J. Reynolds

Introduction
Geochemistry of Plutonic Rocks
Geochemistry of Metamorphic and Mylonitic Rocks
Geochemistry of Dislocation Zones

CHAPTER 6 -- URANIUM FAVORABILITY OF CORDILLERAN METAMORPHIC CORE COMPLEXES: A SUMMARY by Stephen J. Reynolds

Introduction
Uranium Favorability
Criteria for Evaluation of Favorability
Recommendations for Future Study
<table>
<thead>
<tr>
<th>APPENDICES*</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE OF CONTENTS</td>
<td></td>
</tr>
<tr>
<td>APPENDIX A -- ANNOTATED BIBLIOGRAPHY OF CORDILLERAN METAMORPHIC CORE COMPLEXES by Diane C. Ferris and Stephen J. Reynolds</td>
<td>325</td>
</tr>
<tr>
<td>APPENDIX B -- ANNOTATED BIBLIOGRAPHY OF THE URANIUM FAVORABILITY OF CORDILLERAN METAMORPHIC CORE COMPLEXES by Stephen J. Reynolds</td>
<td>327</td>
</tr>
<tr>
<td>APPENDIX C -- URANIUM OCCURRENCES IN THE CORDILLERAN METAMORPHIC CORE COMPLEX BELT by Diane C. Ferris</td>
<td>409</td>
</tr>
<tr>
<td>Okanogan</td>
<td>511</td>
</tr>
<tr>
<td>Kettle</td>
<td>516</td>
</tr>
<tr>
<td>Selkirk</td>
<td>523</td>
</tr>
<tr>
<td>Bitterroot</td>
<td>532</td>
</tr>
<tr>
<td>Pioneer</td>
<td>537</td>
</tr>
<tr>
<td>Albion</td>
<td>540</td>
</tr>
<tr>
<td>Raft River and Grouse Creek</td>
<td>544</td>
</tr>
<tr>
<td>Ruby and East Humboldt</td>
<td>548</td>
</tr>
<tr>
<td>Snake, Schell Creek and Kern</td>
<td>553</td>
</tr>
<tr>
<td>Whipple, Chemehuevi, Sacramento and Dead</td>
<td>557</td>
</tr>
<tr>
<td>Harquahala, Harcuvar, Buckskin and Rawhide</td>
<td>560</td>
</tr>
<tr>
<td>White Tank</td>
<td>568</td>
</tr>
<tr>
<td>South Mountains</td>
<td>571</td>
</tr>
<tr>
<td>Picacho</td>
<td>575</td>
</tr>
<tr>
<td>Santa Catalina, Rincon, and Tortolita</td>
<td>578</td>
</tr>
<tr>
<td>Pinaleno-Santa Teresa</td>
<td>586</td>
</tr>
<tr>
<td>Sierra Blanca</td>
<td>589</td>
</tr>
<tr>
<td>North Comobabi</td>
<td>592</td>
</tr>
<tr>
<td>Coyote</td>
<td>594</td>
</tr>
<tr>
<td>Kupk and Alvarez</td>
<td>596</td>
</tr>
<tr>
<td>Pozo Verde</td>
<td>597</td>
</tr>
<tr>
<td>APPENDIX E -- LOCATIONS, LITHOLOGIC DESCRIPTIONS, PETROGRAPHIC INFORMATION AND ANALYTICAL DATA FOR GEOCHEMICAL SAMPLES by Stephen J. Reynolds, Stanley B. Keith, and James F. DuBois</td>
<td>599</td>
</tr>
</tbody>
</table>

*Appendices and final report are bound in separate volumes.