APPENDIX B

ANNOTATED BIBLIOGRAPHY OF THE URANIUM FAVORABILITY OF
CORDILLERAN METAMORPHIC CORE COMPLEXES

by

Stephen J. Reynolds

Introduction

This bibliography contains references pertinent to the
uranium favorability of Cordilleran metamorphic core complexes.
Important topics discussed in each reference are indicated by the
following annotations.

A - Geology, geochemistry and mineralogy of uranium

A1 - Regional variations in uranium abundance
A2 - Geology of uranium deposits
A3 - Geochemistry and mineralogy of uranium

B - Uranium and processes relevent to Cordilleran metamorphic
core complexes

B1 - Plutonic processes
B2 - Metamorphic processes
B3 - Mylonitic processes
B4 - Processes related to dislocation surfaces
B5 - Processes extrinsic to the evolution of Cordilleran
metamorphic core complexes

C - Geology and uranium occurrences of Cordilleran metamorphic
core complexes

C1 - Washington - northern and central Idaho - Montana
C2 - Southern Idaho - Nevada - Utah
C3 - California - Arizona
References with 'A' class annotations discuss the general geology, geochemistry and mineralogy of uranium. The references included in this class are those most relevant to the evaluation of uranium favorability of Cordilleran metamorphic core complexes or which contain valuable bibliographies. The subdivision of 'B' class annotations parallels that in Chapter 4 in which separate sections are devoted to different types of processes. An extensive compilation of literature that describes the geology, geochemistry, petrology and tectonic setting of peraluminous, muscovite-bearing granitoids of the world is incorporated into the 'Bl' annotation. Data from many 'Bl' papers were used to construct figures in Chapters 4 and 5. References with 'C' class annotations discuss the geology and uranium occurrences of the northern (C1), central (C2), and southern (C3) thirds of the core complex belt. Only key papers on the geology of each complex are listed here since Appendix A is a complete Bibliography on the subject. This bibliography was compiled and annotated by Stephen J. Reynolds with assistance from Diane C. Ferris and Jeanne Woodward.
BIBLIOGRAPHY


Atherton, M. P., and Brotherton, M. S., 1979, Thorium and uranium in some pelitic rocks from the Dalradian, Scotland: Chemical Geology, v. 21, p. 329-342.


Beus, A. A., 1956, Geochemistry of beryllium: Geochemistry, no. 5, p. 511-531.


Bradfish, L. J., 1979, Petrogenesis of the Tea Cup granodiorite, Pinal County, Arizona [M.S.]


Burwash, R. A., 1979, Uranium and thorium in the Precambrian basement of western Canada. II.


Cupp, G. M., and Mitchell, T. P., 1978, Preliminary study of the uranium favorability of granitic and contact-metamorphic rocks of the Owens Valley area, Inyo and Mono Counties,


Dostal, J., 1975, The origin of garnet-cordierite-sillimanite bearing rocks from Chandos township, Ontario; Contributions to Mineralogy and Petrology, v. 49, p. 163-175.


Flood, R. H., and Shaw, S. E., 1975, Two 'S-type' granite suites with low initial 87Sr/86Sr ratios from the New England batholith, Australia: Contributions to Mineralogy and Petrology, v. 61, p. 163-173.


Fox, K. F., Jr., and Rinehart, C. D., 1972, Distribution of copper and other metals in gulley sediments of part of Okanogan County.


Fuge, R., 1977, On the behavior of fluorine and chlorine during magmatic differentiation: Contributions to Mineralogy and Petrology, v. 61, p. 245-249.

Fyfe, W. S., 1970, Some thoughts on granitic magmas, in Newall, G., and Rast, N., eds.,
Mechanism of igneous intrusion: Geological Journal Special Issue 2, p. 201-216.


Gassaway, J. S., 1977, A reconnaissance study of Cenozoic geology in west-central Arizona [M.]
S. thesis): San Diego State University, San
Diego, California, 120 p.

Geze, B., 1949, Etude geologique de la Montagne
Noire et des Cevennes Meridionales: Societe

Granger, A. E., Bell, M. M., Simmons, G. C., Lee,
F., 1957, Geology and mineral resources of
Elko county, Nevada: Nevada Bureau of Mines
and Geology Bulletin 54.

Granger, H. C., and Raup, R. B., Jr., 1962, Recon-
naissance study of uranium deposits In Ari-
izona: U.S. Geological Survey Bulletin 1147A,
54 p.

resource analysis study on United States
Forest Service land, state of Washington:
U.S. Forest Service, Region 6, USDA contract
D04724N, 93 p.

Grauch, R. J., and Zariniski, K., 1976, Generalized
descriptions of uranium-bearing veins, pegma-
tites, and disseminations in non-sedimentary
rocks, eastern United States: U.S. Geological

Gray, C. M., 1977, The geochemistry of central
Australian granulites in relation to the chem-
ical and isotopic effects of granulite facies
metamorphism: Contributions to Mineralogy and
Petrology, v. 65, p. 79-89.

Grebenchikov, A. M., and others, 1977, Radioactive
and alkaline elements in metasomatics of
gold-silver deposits of Kazakhstan: Interna-

Green, T. H., 1976, Experimental generation of
cordierite- or garnet-bearing granitic liquids
from a pelitic composition: Geology, v. 4, p.
85-88.

Green, T. H., 1977, Garnet in silicic liquids and
its possible use as a P-T indicator: Contri-
butions to Mineralogy and Petrology, v. 65, p.
59-69.

Green, T. H., and Kingwood, A. E., 1968, Origin of
garnet phenocrysts In calc-alkaline rocks:
Contributions to Mineralogy and Petrology, v.
18, p. 163-174.


Howard, K. A., Kistler, R. W., Snook, A. W., and Wilden, R., 1979, Geologic map of the Ruby
Mountains, Nevada: U.S. Geological Survey
Miscellaneous Investigations Series Map
I-1136, scale 1:125,000.


Ingham, W. N., and Keevil, N. B., 1951, Radioactivity of the Bourlamaque, Elzavir, and


James, R. S., and Hamilton, D. L., 1969, Phase relations in the system NaAlSi3O8-KAlSi3O8-CaAlSi2O8-SiO2 at 1 kilobar water vapour pressure: Contributions to Mineralogy and Petrology, v. 21, p. 111-141.


Jones, C. A., 1978a, A classification of uranium deposits in sedimentary rocks, in Mickle, D.


Kish, L., 1975, Radioactive occurrences in the Grenville of Quebec, Mount Laurier - Cabonga district: Quebec Natural Resources and Mining Department, no. DP-310, 30 p.


Lambert, I. B., and Heier, K. S., 1967, The vertical distribution of uranium, thorium, and...
potassium in the continental crust: Geo-
chimica et Cosmochimica Acta, v. 31, p. 377-
390.

Lambert, I. B., and Heier, K. S., 1968a, Estimates
of the crustal abundances of thorium, uranium
233-238.

Lambert, I. B., and Heier, K. S., 1968b, Geochem-
ical investigations of deep-seated rocks in
the Australian shield: Lithos, v. 1, p.
30-53.

Lang, A. H., 1952, Canadian deposits of uranium
and thorium (Interim account): Canada Geo-
logical Survey Economic Geology ser. no. 16,
173 p.

Lange, I. M., 1978, Western Montana metallic min-
eral deposits map: Montana Bureau of Mines
and Geology, MBMG 29, 21 p.

Lanphere, M. A., Wasserburg, G. J., Albee, A. L.,
and Tilton, G. R., 1964, Redistribution of
strontium and rubidium isotopes during meta-
morphism, World Beater complex, Panamint
Range, California, in Isotopic and cosmic
chemistry: Amsterdam, North Holland Pub-
lishing, p. 209-320.

Larsen, E. S., Jr., 1948, Batholith and associated
rocks of Corona, Elsinore, and San Luis Rey
Quadrangles, southern California: Geological
Society of America Memoir 29.

Larsen, E. S., Jr., and Gottfried, D., 1961, Dis-
tribution of uranium in rocks and minerals of
Mesozoic batholiths in western United States:

Larsen, E. S., Jr., and Phair, G., 1954, The dis-
tribution of uranium and thorium in igneous
rocks, in Faul, H., ed., Nuclear geology: New
York, John Wiley, p. 75-89.

Larsen, E. S., Jr., Phair, G., Gottfried, D., and
Smith, W. L., 1956, Uranium in magmatic dif-
ferentiation: U.S. Geological Survey Profes-
sional Paper 300, p. 65-74.

Larson, L. T., Beal, L. H., Firby, J. R., Hibbard,
M. J., Slemmons, D. B., and Larson, E. R.,
C2


Lyakhovich, V. V., 1962, Rare earth elements in the accessory minerals of granitoids: Geochemistry, no. 1, p. 39-55.


Miller, D. M., 1980, Structural geology of the northern Albion Mountains, south-central Idaho, in Crittenden, M. D., Jr., Coney, P. J., and Davis, G. H., eds., Cordilleran
metamorphic core complexes: Geological Society of America Memoir 153 [in press].


Minobras, 1979, Uranium deposits in metamorphic environments: Minobras, Dana Point, California, 158 p.


Pearson, R. C., and Obradovich, J. D., 1977, Eocene rocks in northeast Washington —


Pitcher, W. S., 1979, The nature, ascent and emplacement of granitic magmas: Journal of


Puchlik, K. P., Leach, D. L., and Cazes, D., 1979, Artillery Peak orientation study, Mohave


Rehrig, W. A., Shafiquilah, M., and Damon, P. E., 1960, Geochronology, geology, and tectonic


Shakel, D. W., 1978, Supplemental road log number 21: Santa Catalina Mountains via Catalina


Snook, J. R., 1965, Metamorphic and structural history of the "Colville batholith" gneisses,


Tauson, L. V., Zlobin, B. I., and Leonova, L. L., 1968, Uranium distribution in the granitoid
complex of the Sussamyrsk batholith, central Tien-Shan: Geochemistry, no. 7, p. 653-662.


Thompson, A. B., and Tracy, R. J., 1979, Model systems for anatectic of pelitic rocks. II. Facies series melting and reactions in the system CaO-KAlO2-NaAlO2-Al2O3-SiO2-H2O: Contributions to Mineralogy and Petrology, v. 70, p. 429-438.


Thorman, C. H., and Drewes, H., 1978, Mineral resources of the Rincon Wilderness study area,


Tishkin, A. I., and Strel'tsov, V. A., 1973, Behavioral features of uranium during the pegmatite process, in Reviews of the geochemistry of individual elements: Moscow, Izd-vo Nauka.


Whitfield, J. M., Rogers, J. J. W., and Adams, J. A. S., 1959, The relationship between the petrology of the thorium and uranium contents of
some granitic rocks: Geochimica et Cosmo-

Whitney, J. A., 1975, Vapor generation in a quartz
monzonite magma: a synthetic model with ap-
plication to porphyry copper deposits: Eco-
nomic Geology, v. 70, p. 346-358.

Whitney, P. R., 1969, Variations in the K/Rb ratio
in migmatitic paragneisses of the northwest
Adirondacks: Geochimica et Cosmochimica Acta,
v. 33, p. 1203-1211.

inclusions, deformation and recrystallization
293-299.

Wilson, C. J. L., 1977, Combined diffusion - in-
filtration of uranium in micaceous schists:
Contributions to Mineralogy and Petrology, v.
65, p. 171-181.

Wilson, E. D., 1969, Mineral deposits of the Gila
Indian Reservation, Arizona: Arizona Bureau

Wilson, E. D., and Butler, A. P., Jr., 1946, Geol-
ogy of the New Planet iron deposit, Yuma
County, Arizona: U.S. Bureau of Mines, RI
3482, p. 3-4.

Wilson, E. D., Moore, R. T., and Cooper, J. R.,
1969, Geologic map of Arizona: Arizona Bureau

Wilson, E. E., Rhoden, V. C., Vaughn, W. W., and
Paul, H., 1954, Portable scintillation
counters for geologic use: U.S. Geological
Survey Circular 353, 10 p.

Winkler, H. G. F., 1976, Petrogenesis of meta-
morphic rocks: Springer-Verlag.

Wopat, M. A., 1978, Preliminary study of the ura-
nium favorability of the Latah formation,
eastern Washington and northern Idaho: U.S.
Department of Energy GJBX-75(78), Open-File
Report.

Wright, L. A., Otton, J. K., and Troxel, B. W.,
1974, Turtleback surfaces of Death Valley
viewed as phenomena of extensional tectonics:
Geology, v. 2, p. 79-80.


Wyllie, P. J., 1979, Magmas and volatile components; American Mineralogist, v. 64, p. 469-500.


Yermolayev, N. P., 1971, Processes of redistribution and extraction of uranium in the progressive metamorphism; Geochemistry International, v. 8, p. 599-609.


