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SUMt-1'...ARY 

By 

Peter J. Coney and Stephen J. Reynolds 

Cordilleran metamorphic core complexes are unique centers of 
plutonism, metamorphism, and deformation that are distributed in 
a discontinuous zone through the interior of the western United 
States. They are characterized by a distinctive assemblage of 
rocks and structures which occur in broad arch-like or domal 
features. They exhibit a central crystalline core of plut onic 
and high- grade metamorphic rocks. In high structural levels, 
these rocks are overprinted by a gently inclined mylonitic folia­
tion containing a distinctive lineation. This lineation is 
typically consistent in trend over an entire mountain range or 
region. Near the margins of the crystalline core, the mylonitic 
rocks have been converted into a chloritic breccia via jointing, 
brecciation, faulting and hydrothermal alteration or retrograde 
metamorphism. The chloritic breccia is accompanied and overlain 
by a curvi-planar dislocation surface or decollement. Above the 
dislocation surface are an assortment of tilted and rotated rocks 
which generally lack any mylonitic fabric or metamorphic texture. 
These upper-plate rocks range in age from Precambrian to middle 
Tertiary and are cut by numerous low-angle structures ¼hich are 
inferred to be listric-normal faults that merge with or terminate 
against the underlying dislocation surface . A variation on this 
general theme occurs in several complexes where a zone of highly 
tectonized metasedimentary rocks (commonly marble) occupies the 
footwall of the dislocation surface. 

Available geochronologic studies indicate a prolonged 
geological history for plutonic and metamorphic rocks of the 
crystalline core. However, it can generally be documented that 
final cooling of the crystalline core and movement on the dis­
location surface are Tertiary: A Tertiary age for mylonitization 
is demonstrated for some complexes and can be inferred for many 
others. The genetic relationship between plutonism, metamorphism, 
mylonitization, and dislocation is currently controversial. 

The uranium favorability of Cordilleran metamorphic core 
complexes is a function of processes that are either intrinsic or 
extrinsic to evolution of the complexes. Intrinsic processes 
include plutonism, metamorphism, mylonitization and formation of 
the dislocation surface (brecciation, hydrothermal alteration, 
tilting, etc . ). Extrinsic processes such as weathering and sed­
imentation might have operated on rocks of the complexes before, 
during, or after the main phases of development of the complexes. 
Under favorable circumstances, both intrinsic and extrinsic 
processes are able to concentrate uranium into economically viable 
deposits. 
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The uranium favorability of Cordilleran metamorphic core 
complexes, as a group, is low. However, the favorability of 
individual complexes is as variable as their internal geology and 
regional tectonic setting. The Kettle, Selkirk and Albion 
complexes have the highest uranium favorability, while the 
remainder of the complexes have very low to moderate favorability. 

Cordilleran metamorphic core complexes are in general most 
favorable for pegmatitic, metamorphic, hydrothermal, authigenic, 
allogenic, and peripheral lacustrine uranium occurrences. The 
complexes may be significant sources of uranium for later redistri­
bution and concentration. Of particular importance in this regard 
are dislocation zones on the flanks of the complexes which may 
have been permeable channels or depositional sites for ascending 
(hydrothermal) or descending (meteoric) uraniferous fluids. The 
uranium potential of such zones is unknown and will only be 
revealed by exploratory drilling down-dip from uraniferous core 
rocks. Additional detailed study is needed to further document 
the uranium favorability of individual metamorphic core complexes. 

18 



ACKNOWLEDGMENTS 

The Principal Investigators are very grateful for the coopera­
tion and efforts of many individuals who participated in the com­
pletion of this report. George Davis and Paula Trever, Department 
of Geosciences, University of Arizona and Stanley Keith, Arizona 
Bureau of Geology and Mineral Technology made significant contributions 
to the main scientific thrust of the project. Steven H. Lingrey 
and Charles F. Kluth, Department of Geosciences, University of Ari zona 
did much of the original map compilations which appear on the 
1:1,000,000 and 1:250,000 tectonic maps. Dianne C. Ferris, Department 
of Geosciences, University of Arizona compiled t he b i bliography and 
prepared the uraniumoccurrencelists and was always ready to provide 
any assistance needed. James F. Dubois was responsible for the thin­
section petrography. Victoria V. Schale, Karl S. Tsuji, Rex A. Knepp, 
and Nancy Riggs did the drafting for the report . Sandra Hallenbeck, 
Administrative Assistant, Department of Geosciences , University of 
Arizona organized the logistics for final preparation of this report. 
Pat Bougie patiently coordinated and performed the typing. Richard L. 
Armstrong of the University of British Columbia, Greg A. Davis of the 
University of Southern California, Ed DeWitt of the Pennsylvania 
State University, and Wesley Peirce and Robert Scarborough both of 
the Arizona Bureau of Geology and Mineral Technology were most 
cooperative in providing unpublished data and helpful discussion 
which improved significantly the final product of this project. 

We are all deeply grateful to John Burger of Bendix Field 
Engineering Corporation who was always most helpful and supportive 
and very patient throughout the entire project . We deeply 
appreciate the opportunity to carry out this study which because 
of its timeliness has considerably improved our understanding of 
Cordilleran metamorphic core complexes. 

19 



20 



INTRODUCTION 

by 

Peter J. Coney and Stephen J. Reynolds 

GENERAL STATEMENT 

Cordilleran metamorphic core complexes are characterized 
by shallow-dipping foliation-lineation arches and domes composed 
of metamorphosed, migmatized and anomalously deformed rocks whose 
protoliths can range from Precambrian to middle Tertiary in age. 
Most have plutonic bodies within them and late-stage granitic rocks, 
frequently of two-mica composition with aplitic and pegmatitic 
phases, are common. All the complexes are associated with high­
level decollement or dislocation zones and listric normal faults 
in an unmetamorphosed cover terrane. Much of the deformation in 
the cover as well as in the metamorphosed core zone can be proven 
to have occurred in Tertiary time. Early to Middle Tertiary 
basinal continental sedimentary rocks and associated caldera re­
lated volcanic rocks are common on margins of the complexes. These 
sediments and volcanics are usually tilted to high angles by 
listric normal faulting. Geochemistry and geochronology in core­
zone rocks is always complex and radiometric age determinations 
can range from 2 billion to as young as 11 million years. 
Cordilleran metamorphic core complexes are found in a rather 
narrow sinuous belt along the so-called "hinterland" of the 
eastern part of the North American Cordillera from southernCanada 
southward into Sonora, Mexico. Over 25 complexes are now recog­
nized most of which have only been identified since 1970. The 
features are presently surrounded by considerable controversy and 
there exists conflicting opinion as to their timing and mechanism 
as well as to their regional tectonic significance. 

As awareness of these newly recognized tectonic features be­
came more widespread the question was asked as to what economic 
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significance they might have. One of the first things that came 
to mind was their possible uranium potential. The reasons for 
this were, in the minds of some, both theoretical and observational. 

A theoretical basis for a high uranium potential seemed 
to rest largely on the evidence for remobilization of pre-existing 
continental crust and on the widespread presence of granitic 
plutons of a two-mica type, that are characterized by extensive 
late-stage, residual phases of alaskite, pegmatite, and aplite. 
This type of pluton was believed by some to have anatectic origins 
and a high potential for late-stage concentrations of uranium. 
Also, it is probable that hydrothermal and meteoric processes in 
the complexes were capable of further concentration of uranium in 
adjacent sedimentary basins. 

The observational basis for a possible high uranium poten­
tial was suggested by the fac t that many known occurrences of 
uranium are clearly associated with a metamorphic core complexes, 
although previous workers had not recognized the relationship, 
mostly because the complexes had not been recognized for what they 
were. Also, there has been much interest in the Rossing uranium 
deposit of southwest Africa which is classified by Bendix as 
"Anatectic" and which is associated with a "gneiss dome". Since 
some felt that the complexes were in fact gneiss domes interest 
was aroused in the complexes as possible sources of uranium. It 
was in the above context that the Department of Geosciences of t he 
University of Arizona was approached by Bendix Field Engineering 
Corporation to provide a study of Cordilleran metamorphic core 
complexes and their uranium favorability as part of their World 
Class Studies program on uranium resources. 

OBJECTIVES AND SCOPE OF THIS REPORT 

The objective of this report is to provide a descriptive 
body of knowledge on Cordilleran metamorphic core complexes 
including their lithologic and structural characteristics, their 
distribution within the Cordillera, and their evolutionary history 
and tectonic setting. We also examine the occurrance of uranium 
in the context of possibility for uranium concentration. 

Chapters 1-3 deal with the basic geologic data on the 
complexes and related features while Chapters 4-6 deal with uran­
ium distribution and potential of the complexes in western United 
States. Chapter l is an overview of Cordilleran metamorphic core 
complexes which describes their physical characteristics, tectonic 
setting and geologic history. This overview is accompanied by a 
tectonic map at a scale of 1:1,000 ,000 of the core complex belt 
(Map 1-1). Chapter 2 is a discussion of the mantled gneiss dome 
concept. The purpose of including this work is to provide a basic 
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history of this concept and to describe the characteristics and 
distribution of gneiss domes throughout the world to enable one to 
compare and oontrast them with the metamorphic core complexes 
as discussed in this report. Since some gneiss domes are known 
producers of uranium (as are also some core complexes) we felt 
it would be productive to include a discussion on them. Chapter 3 
is an examination of the effects of the core complex process on 
adjacent sedimentary and volcanic cover terranes which can ex­
tend over 100 kms. beyond the exposed cores of the complexes 
themselves. Also included is a discussion of the kinematic 
significance of these cover terranes as they are related to 
process within the cores of the complexes. Since some of the 
cover terranes have uranium prospects in them we include a dis­
cussion of them. Chapter 4 is a detailed discussion of uranium 
in Cordilleran metamorphic core complexes and includes the con­
ceptual basis for the various types of occurrences and the pro­
cesses that might favor concentration of uranium. 

The report is supported by a 5-part Appendix. Appendix A is 
a complete annotated bibliography on Cordilleran metamorphic core 
complexes, gneiss domes in world geologic literature, and any 
geologic-tectonic sources relevant to the core complex problem. 
Appendix Bis an. annoted bibliography on the uranium aspects of 
metamorphic core complexes, gneiss domes, and two-mica granites . 
Appendix C is a listing of uranium occurrence in the core complex 
belt of western United States and is accompanied by 1:1,000,000 
scale maps of each of the states within which the belt occurs, 
showing the locations of the uranium occurrences included in the 
list . Appendix Dis a geologic and uranium distribution summary of 
each of the core complexes accompanied by a tectonic-geologic map 
of each of the complexes at a scale of 1: 250,000. In this section 
the uranium favorability of each complex is discussed. Appendix 
Eis a data list of sample locations, geochemical data, and petro­
graphic descriptions. 

It is worth pointing out in conclusion that the majority of 
the core complexes discussed in this report either do not appear 
or are not recognizable on existing published geologic maps. They 
are, without question, the newest addition t o the recognized 
architecture of the Cordillera. This report is an attempt to 
rectify the inadequacy of existing information and to provide a 
basis to access both their economic as well as scientific potential . 
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